
Numerical solutions for PDEs in Option
pricing

Undergraduate Thesis

Submitted in partial fulfillment of the requirements of

BITS F421T Thesis

By

Jaskamal kainth

ID No. 2013B4A70586P

Under the supervision of:

Dr. Devendra Kumar

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI, PILANI CAMPUS

December 2017

Declaration of Authorship

I, Jaskamal kainth, declare that this Undergraduate Thesis titled, ‘Numerical solutions for

PDEs in Option pricing’ and the work presented in it are my own. I confirm that:

⌅ This work was exclusively done during candidature for a research degree at this University.

⌅ Where any part of this thesis has formerly been submitted for a degree or this has been

clearly stated that any part of this thesis has formerly been submitted.

⌅ Where I have referred to the published work of others, this is always clearly attributed.

⌅ Where I have quoted from the work of others, the source is always provided. exclusive of

these quotations, this thesis is entirely my own work.

⌅ I have acknowledged all the major sources of help.

⌅ Where the thesis is the result of work done by myself, I have made clear exactly what was

done by others and what I have done myself.

Signed:

Date:

i

Certificate

This is to certify that the thesis entitled, “Numerical solutions for PDEs in Option pricing” and

submitted by Jaskamal kainth ID No. 2013B4A70586P in partial fulfillment of the requirements

of BITS F421T Thesis embodies the work done by him under my supervision.

Supervisor

Dr. Devendra Kumar

Asst. Professor,

BITS-Pilani Pilani Campus

Date:

ii

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI, PILANI CAMPUS

Abstract

M.Sc. (Hons.) Mathematics

Numerical solutions for PDEs in Option pricing

by Jaskamal kainth

In this report, we start with the basic introduction to options and related terms which are used

alongwith option pricing. After the basic introduction part, first numerical method ”Cubic

B-spline” is discussed. The aim of this thesis is to apply the B-spline collocation method to

solve Black scholes equation used in option pricing. Firstly, this method is used to solve various

boundary value problems. After the description of B-splines, various examples are solved using

this method which shows the accuracy of this method. After working out with ODEs, we shift

our focus towards solving general PDEs with cubic B-splines After applying Cubic b-spline to

ODEs and PDEs , we shift towards our main goal to solve Black scholes equation. The methods

accuracy and error analysis is done for the Asian options.

The second part of the thesis is the description of the Radial basis functions and the method

to solve various PDE numerically. We have use Inverse quadratic as our radial basis function.

After this ,the method is explained to solve various PDEs (linear and Non linear PDE). Various

examples of Linear PDEs like Heat equation and Di↵usion equation are numerically solved and

results are shown. After this, Nonlinear Burger equation is solved for various shape parameters.

In the end, we conclude with the discussion on the convergence and influence of the shape

parameter on the accuracy of this RBF method.

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Devendra Kumar for

his regular support of my thesis study and related research, for his time, guidance and immense

knowledge in this area. I could not have imagined having a better advisor and mentor for my

thesis study. Beside my advisor, i would also thank my M.Sc(Hons) Mathematics batch mates

who helped me in correcting, implementing my code. Finally, I would like to thank Mathematics

department at BITS Pilani, Pilani campus for allowing me to do this thesis study and evaluating

this project report.

iv

Contents

Declaration of Authorship i

Certificate ii

Abstract iii

Acknowledgements iv

Contents v

List of Figures vii

List of Tables viii

Contents viii

1 Introduction 1

2 Cubic B-Splines 4

2.1 Introduction . 4

2.2 Application of Cubic B-Splines to solve BVP . 6

2.2.1 Examples of BVP . 8

2.3 Application of Cubic B-Splines to solve PDE’s 10

2.3.1 Solution of Heat equation . 11

2.4 Solution of Black Scholes equation . 13

3 Radial Basis functions 15

3.1 Radial basis function(RBF) Definition . 15

3.2 RBF Interpolation Method . 17

3.2.1 Aprroximating Derivatives . 18

3.3 Solving PDEs by RBF method . 19

3.4 Applications of Radial basis functions . 21

3.4.1 Solving Heat Equation . 21

3.4.2 Solving 1-D Di↵usion Equation . 24

3.4.3 Solving Nonlinear Burger Equation . 27

v

Contents vi

4 Conclusions 31

Bibliography 33

List of Figures

1.1 Value of a Call option with Strike Price (K) . 2

1.2 Value of a Put option with Strike Price (K) . 3

2.1 Numerical solution of BVP, N = 64 . 8

2.2 Numerical solution of BVP, N = 1024 . 9

2.3 Exact solution of BVP . 9

2.4 mesh plot for Heat Equation 3.27 . 12

2.5 Plot of Numerical solution for Heat Equation 3.27 12

2.6 Exact solution for Black scholes equation 2.20 . 14

3.1 Plot of IQX with 3 di↵erent shape parameters s 16

3.2 Numerical solution (N = 64, s = 10) and Exact solution for Heat Equation 3.27

using RBF . 22

3.3 Error Plot of Numerical solution for Heat Equation 3.27 22

3.4 Numerical solution (N = 64, s = 10) and Exact solution for 1-D Di↵usion Equation

3.28 using RBF . 25

3.5 Error Plot of Numerical solution for r 1-D Di↵usion equation 3.28 25

3.6 Numerical solution (N = 128, s = 10) and Exact solution for Burger Equation

3.30 using RBF . 29

3.7 Error Plot of Numerical solution for Burger Equation 3.30 29

vii

List of Tables

2.1 Table showing Spline function and its derivatives evaluated at collocation points 5

2.2 Table showing Number of collocation points vs error for given BVP 8

2.3 Table showing Number of collocation points vs error for give Heat equation 3.27 11

2.4 Table showing Number of collocation points vs double mesh error for Black scholes

equation . 14

3.1 Table showing Number of collocation points vs error for give Heat equation 3.27 21

3.2 Table showing Number of collocation points vs error for give 1-D di↵usion equation

3.28 . 24

3.3 Table showing Number of collocation points vs error (s = 10) for give nonlinear

Burger equation 3.30 . 27

3.4 Table showing Number of collocation points vs error (s = 6)for give nonlinear

Burger equation 3.30 . 27

3.5 Table showing variation of Shape paramter vs error for given Burger equation 3.30 28

viii

Listings

3.1 IQX plot code with di↵erent shape parameters 16

3.2 First and second derivative of Inverse quadratic RBF 18

3.3 Heat Equation MATLAB code using RBF . 23

3.4 1-D Linear Di↵usion Equation MATLAB code using RBF 26

3.5 Non linear Burger Equation MATLAB code using RBF 30

ix

Chapter 1

Introduction

Options in layman terms is a contract that gives the right but not an obligation to either buy

or sell an assest(stocks/shares of a company/ foreign currencies/ commodities) on or before a

certain date.

In general,there are two types of options named Call and Put. When we buy a call option we

wish that the option price goes up and when we buy a put option we wish that the option price

goes down. So, In general we can buy an option and then sell it in future (hopefully with higher

price) Or we can sell an option as an opening trade and hopefully buy it back at a lower price as

a closing trade.

A Call Option is basically a well defined contract b/w two parties to agree to exchange the

known stock at predefined ”strike” price by a predetermined date. The buyer of the ”call” (the

first party) , has the right, but not an obligation, to buy the stock at the strike price by the

predetermined future date, while the seller of the call(the second party), has the obligation to

sell the stock to the buyer at the strike price if the buyer decides to exercise the option.

A Put Option is basically a well defined contract b/w two parties to exchange a stock at a

”strike” price, by a predetermine date. The buyer of the ”put” has the right , but not an

obligation, to sell the stock at the strike price by the future date, while the seller of the put, has

the obligation to buy the stock from the buyer at the strike price if the buyer decides to exercise

the option.

Option prices are based on 3 elements:

• TIME TO EXPIRATION: - Options have expiration dates. Just like in insurance we have

to pay periodically a fixed amount , similar case happens with options. More the time ,

more the price you have to pay. Time decay happens as we go closer to expiration. This

graph is exponential i.e as we go near expiration , time decay speeds up and option time

1

Chapter 1. Introduction 2

value reaches 0 at the expiration date. Most stocks have options with weekly, monthly,

quaterly exprations. We can choose any one of these to trade in.

• UNDERLYING STOCK PRICE: for each stock we have multiple options at di↵erent price

increments.These are called the option strike price. Strike price is the Pre-determined

price at which the shares of the stock will be exchanged (buy/ sell) if the option is exercised.

Options are worthless at the expiration. Also, we do not have to hold our position until

expiration. Ex: If we buy a call option today and the stock price goes up overnight then

we can sell it and make profit rather than waiting for 30days which is the expiration date.

• VOLATILITY: Magnitude of a Stock’s price swings. Higher volatility means more risk for

the stock owner. Since more risk, it will cost us more money.

The combination of these three factors determines the option prices.

Basic shorting Borrow the stock from someone and sell it, then hope that its price falls you

buy it again and give it back.

Call option as leverage Call option gives us financial leverage as Percent gain with call option

is more than normal stock price. So with call option we multiply our potential gains/losses.

Payo↵ Diagrams Value - Underlying stock price.

• Call payo↵ Diagram

V alue(S, T) is the value of Call option , where S is the current value of the stock with

expiration date T is given by, When StockPrice < StrikePrice , then there is no need

to exercise it since during this time we have negative profit which is our premium, else

V alue = StockPrice StrikePrice (linear line) , here profit is positive after StockPrice +

Premium.

Figure 1.1: Value of a Call option with Strike Price (K)

Chapter 1. Introduction 3

• Put payo↵ Diagram [similar to call with minor changes].

if underlying stock price is 0 then we will definitely exercise our put option and make profit

of our strike price [y-intercept is strike price].Now above strike price we have right to not

exercise our option therefore value is 0 and profit is negative premium.

Figure 1.2: Value of a Put option with Strike Price (K)

The Popular Black-Scholes model is used to calculate the value the value (price) of an option.

In this thesis, a highly accurate numerical method which solves this equation is explained and

implemented.There are many types of options, like European options, American options, Asian

options etc. The exact solution for the European option is known, but we will solve it numerically

using our numerical methods. This is done to create a general Numerical method which solves

this Black-Scholes equation for all type of options.

Chapter 2

Cubic B-Splines

2.1 Introduction

Spline is a function define by piecewise polynomials. Splines are used in Interpolating problems.

The most common spline is the cubic spline of degree 3. Any spline function can be represented

as a linear combination of B-Splines of that degree, where B-Spline is a shortform of Basis spline.

B-splines method can be used to solve one-dimensional heat or wave equations using discretization

in the time space while the cubic B-spline is applied in the space dimension as an interpolation

function.

Let I = [a, b] ⇢ R be an interval. Let p, q, r : [a, b] ! be continuous functions.

Throughout this report, we will consider the Linear 2nd order Di↵erential equation given by

y00 + p(x)y0 + q(x)y = r(x), a  x  b (2.1)

Where the Boundary conditions are, Dirichlet(First kind) : y(a) = ⌘1, y(b) = ⌘2.

The cubic B-Splines are used to approximate the exact solution of the equation 2.1.

Lets define the Cubic splines, Consider the Infinite Linear space S3(⇡) , which contains all

the functions s(t) that can be reduced to cubic polynomials on sub-intervals (ti, ti+1) where

0  i  n 1 on the interval [a, b].

There exists a unique function s(t) in the space S3(⇡) such that it satisfies the following

constraints:

s0(t0) = f 0(t0)

s(ti) = f(ti) where 0  i  n 1

s0(tn) = f 0(tn) with these, the piecewise spline function s(t) interpolates to f(t).

4

Chapter 2. Cubic B-Splines 5

Now, To find this s(t) , we define the partition on the interval [a, b] given by xi = x0 + i ⇤ h

where 0  i  n 1 where h = (b a)/n is the step di↵erence.

This partition forms the collocation points on the interval. Along with this, we defined the

piecewise functions by,

Bi(x) =
1

6h3

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(x xi2)
3, xi2  x  xi1,

h3 + 3h2(x xi1) + 3h(x xi1)
2 3(x xi1)

3, xi1  x  xi,

h3 + 3h2(xi+1 x) + 3h(xi+1 x)2 3(xi+1 x)3, xi  x  xi+1,

(xi+2 x)3, xi+1  x  xi+2,

0, otherwise.

(2.2)

This Bi(x) is piecewise cubic functions with the same collocation points and also it fulfills the

property that they are twice continuously di↵erentiable 8x 2 R

Thus, We can compute values of Bi(xi) , B
0

i(x) and B00

i (x) using above Bi(x) and the tabulated

values are shown in table 2.1.

xi2 xi1 xi xi+1 xi+2

Bi(x) 0 1/6 4/6 1/6 0

B0

i(x) 0 1/2h 0 1/2h 0

B00

i (x) 0 1/h2 2/h2 1/h2 0

Table 2.1: Table showing Spline function and its derivatives evaluated at collocation points

Chapter 2. Cubic B-Splines 6

2.2 Application of Cubic B-Splines to solve BVP

Now, lets approximate the exact solution of the below equation using the theory discussed in

the previous section.

y00 + p(x)y0 + q(x)y = r(x), a  x  b (2.3)

Where the Boundary conditions are,

Dirichlet(First kind) : y(a) = ⌘1, y(b) = ⌘2.

Over any sub-interval [xi, xi+1] , there exist 4 cubic B-splines(refer in 2.1). S(x) gives the

approximated value of y(x) in this sub-interval. Where S(x) is some linear combination of 4

cubic B-splines over this sub-interval.

Therefore,

S(x) =
X

↵kBk(x) 8 i 1  k  i+ 2 (2.4)

where ↵k are the corresponding coefficients of the collocation points that must be evaluated.

Similarly,

S0(x) =
X

↵kB
0

k(x) 8 i 1  k  i+ 2 (2.5)

S00(x) =
X

↵kB
00

k(x) 8 i 1  k  i+ 2 (2.6)

Now , after substituting the former approximate solution into the given equation 2.3 and using

the the table 2.1 ,we get the corresponding coefficients as,

↵i1 := 1/h2 a(xi)/2h+ b(xi)/6 (2.7)

↵i := 2/h2 + 2b(xi)/3 (2.8)

↵i+1 := 1/h2 + a(xi)/2h+ b(xi)/6 (2.9)

With this, we obtain n + 1 equations since 80  i  n and n + 3 unknowns since ↵
1 and

↵n+1 are also unknowns. We can obtain 2 more equations using the given Boundary conditions.

y(a) = ⌘1, y(b) = ⌘2 For simplicity, assume a = 0, b = 1. So we get,

↵
1 + 4↵0 + ↵1 = 6⌘1 (2.10)

↵n1 + 4↵n + ↵n+1 = 6⌘2 (2.11)

Chapter 2. Cubic B-Splines 7

Hence, using these, we can solve the system of equations AX = F (where A is the coefficient

matrix , X are alpha values and F are function values matrix) to obtain the approximate solution.

This can be done by finding inverse of A in MATLAB.

After finding the X (column matrix), we can get the approximated value of y(xi) using

s(xi) = (↵i1 + 4↵i + ↵i+1)/6 (2.12)

and hence solving the given BVP numerically. In the next section we will see some solved

examples using the same theory.

Chapter 2. Cubic B-Splines 8

2.2.1 Examples of BVP

y00 + 4y0 + 4y = 0; y(0) = 1, y(1) = 3; (2.13)

The exact solution is given by Yexact = (3e21)xe2x+e2x. Using B-spline method explained in

previous section to approximate the solution for the equation 2.13, we get the error as tabulated

in the table.

No. N (number of collocation points) Error

1 64 6.01E-4

2 128 1.52E-4

3 256 3.79E-5

4 512 9.46E-6

5 1024 2.37E-6

6 2048 5.92E-7

7 4096 1.47E-7

Table 2.2: Table showing Number of collocation points vs error for given BVP

The plot of Numerical solution and Exact solution is shown..

Figure 2.1: Numerical solution of BVP, N = 64

Chapter 2. Cubic B-Splines 9

Figure 2.2: Numerical solution of BVP, N = 1024

Figure 2.3: Exact solution of BVP

Chapter 2. Cubic B-Splines 10

2.3 Application of Cubic B-Splines to solve PDE’s

A common finite di↵erence scheme is applied to discretise the time space while the cubic B-spline

is used to interpolate the approximated solutions at time t. The Partial di↵erential equation

governing the heat equation is given by

ut = ↵uxx, a  x  b, t > 0 (2.14)

with the initial and boundary conditions given by,

u(x, tin) = f(x) (2.15)

u(xin, t) = g1(t) (2.16)

u(xf , t) = g2(t) (2.17)

where ↵ denotes the thermal di↵ussion constant of the rod. After discretising with respect to

time space we get,

u(x, ti) = u(x, ti1) + t↵u00 (2.18)

Now, we approximate u(x, ti) using the B-spline method discussed in the previous section.

Chapter 2. Cubic B-Splines 11

2.3.1 Solution of Heat equation

Now, lets apply the method discussed in previous section to find the approximate solution of the

linear Heat PDE.

ut = uxx, 0  x  1, t > 0 (2.19)

with initial and boundary conditions

u(x, 0) =
sin(⇡x)

2

u(0, t) = 0

u(1, t) = 0

The exact solution is given by Yexact =
sin(⇡x)e⇡

2
t

2 . Using B-spline method to approximate the

solution for the equation 3.27, we get the error as tabulated in the table below.

No. N (number of collocation points) Error

2 8 7.30E-2

3 16 3.79E-2

4 32 1.61E-2

5 64 5.20E-3

6 128 1.70E-3

Table 2.3: Table showing Number of collocation points vs error for give Heat equation 3.27

As we can see the order of convergence for this problem is nearly which can be seen by the error

results we got. for every double points of collocation, the error gets reduced to half.

The mesh plot for this heat equation and also the plot of numerical solution for heat equation is

shown below.

Chapter 2. Cubic B-Splines 12

Figure 2.4: mesh plot for Heat Equation 3.27

Figure 2.5: Plot of Numerical solution for Heat Equation 3.27

Chapter 2. Cubic B-Splines 13

2.4 Solution of Black Scholes equation

@u

@t
=

1

2
2x2(lnx)2

@2u

@x2
+ [(

1

T
 r lnx)x+

2

2
x(lnx)2]

@u

@x
(2.20)

(x, t) 2 (0, 1)⇥ (0, T]

with initial and boundary conditions

u(x, 0) = 0, x 2 (0, 1)

u(0, t) = 0, t 2 [0, T]

u(1, t) =
(1 ert)

Tr
, t 2 [0, T]

In 2.20 is the volatility, T is the expiration time, r is the risk free interest rate which is constant

throughout the time period of interest.

We solve this Initial boundary value problem using Cubic B-spline methods for PDE as discussed

in previous sections.

Discretize the 2.20 in time space , we get

u(x, ti) = u(x, ti1) + t(↵1u
00 + ↵2u

0) (2.21)

where ↵1 and ↵2 are coefficients of @2u
@x2 and @u

@x
respectively in 2.20 .

Chapter 2. Cubic B-Splines 14

Figure 2.6: Exact solution for Black Scholes equation 2.20

No. N (number of collocation points) Error (Double Mesh)

1 4 1.15E-1

2 8 3.15E-2

3 16 2.33E-2

4 32 1.56E-2

5 64 9.70E-3

6 128 5.81E-3

7 256 3.50E-3

Table 2.4: Table showing Number of collocation points vs double mesh error for Black scholes
equation

Chapter 3

Radial Basis functions

3.1 Radial basis function(RBF) Definition

A Radial basis function (RBF) is a real-valued function whose value depends on the distance from

the origin, i.e (x) = (||x||) or in general from any other point say xi so that (x) = y(||xxi||).
A function is said to be radial function if it satisfies (x) = (||x||). There are large number of

Radial basis function that can be used in RBF approximation. For example, MultiQuadratic RBF

, Gaussian RBF , Inverse Quadratic RBF , inverse multiquadric RBF. The Inverse Quadratic

RBF is the focus of this thesis due to its recent discoveries and its good approximation properties.

(r, s) =
1

1 + (sr)2
(3.1)

where r = (||x xi||).

The Inverse Quadratic RBF is a function of the shape parameter s and the 3.1 shows how the

function becomes flat as s increases.The MATLAB code which plots this is given in listing .

Some other Radial basis functions are ,

(r, s) = esr2 (3.2)

(r, s) =
1

p

1 + (sr)2
(3.3)

3.2 is Gaussian RBF and 3.3 is Inverse Multi-quadratic RBF.

15

Chapter 3. Radial Basis functions 16

1 x = linspace (0,1,6);

2 s = 4;

3 v = 1./(1 + (s.*x).^2);

4 plot(x, v, ’b-’, ’LineWidth ’, 3);

5 hold on;

6 s = 2;

7 v = 1./(1 + (s.*x).^2);

8 plot(x, v, ’g-’, ’LineWidth ’, 3) ;

9 hold on;

10 s = 0.5;

11 v = 1./(1 + (s.*x).^2);

12 plot(x, v, ’r-’, ’LineWidth ’, 3) ;

13 legend(’s = 4’,’s = 2’,’s = 0.5’);

Listing 3.1: IQX plot code with di↵erent shape parameters

Figure 3.1: Plot of IQX with 3 di↵erent shape parameters s

Chapter 3. Radial Basis functions 17

3.2 RBF Interpolation Method

In RBF Interpolation method , we take linear combination of radial basis function (r). Given a

set of centers [xi, 8i 2 [1, N] 2 Rd] , the RBF interpolant function takes the form

P (x) =
X

↵k(||x xk||, s) 1  l  N (3.4)

where r = ||x||2 =
q

x21 + ...+ x2d The coefficients ↵k are computed by using the given condition,

P (xi) = f(xi) (3.5)

at a set of nodes which coincides with the pre-defined centers. This results in a NXN linear

system of equation which can be represented in Matrix form as ,

B↵ = f (3.6)

which can be solved to compute IQX expansion coefficients ↵. The matrix B has the entries,

bij = (||xi xj ||2), 1  i  N 1  j  N (3.7)

and is called the Interpolation matrix. This matrix serves as the basis of the approximation we

will be doing using IQX RBF method. To compute the function interpolant at M points xi

using 3.4 , the MXN Evaluation matrix H is formed with entries,

hij = (||xi xj ||2), 1  i  M 1  j  N (3.8)

Now, this can be represented in matrix form as,

f↵ = H↵ (3.9)

which can be evaluated at the M centers in MATLAB.

Chapter 3. Radial Basis functions 18

3.2.1 Aprroximating Derivatives

By linearity of the equation, the RBF equation 3.4 can be used to approximate the derivatives

of the function f(x) as

@

@xi
P (x) =

X

↵k

@

@xi
(||x xk||, s) 1  j  N (3.10)

Other higher order derivatives , mixed partial derivatives can be handled in the same way.

Evaluating at the N centers , 3.10 can be written in matrix notation as,

@

@xi
f↵ =

@

@xi
H↵ (3.11)

where the Evaluation matrix is the N ⇥N matrix @
@xi

H has the entries ,

hij =
@

@xi
(||xi xj ||2), 1  i, j  N (3.12)

By substituting ↵ = B1f in the 3.11 , we get another matrix named Di↵erentiation matrix D,

D =
@

@xi
HB1 (3.13)

Therefore, we can get the approximate derivatives of the function f(x) at the N centers. These

can be represented as,

@

@xi
P (x) = Df (3.14)

The di↵erentiation matrix is well defined since we know that the matrix B is invertible.

1 function v = rbf(obj ,r,s), v = 1./(1 + (s.*r).^2); end

2 % iqx definition

3

4 function d = D1(obj ,r,s,x), d = -(2*x.*s.^2) ./(1.0 + (s.*r).^2).^2; end

5 %first derivative

6

7 function d = D2(obj , r, s, x)

8 d = 2*s.^2.*(-r.^2.*s.^2 + 4*s.^2*x.^2 - 1)./(r.^2*s.^2 + 1).^3;

9 %second derivative

10 end

Listing 3.2: First and second derivative of Inverse quadratic RBF

Chapter 3. Radial Basis functions 19

The first derivative and second derivative of the Inverse quadratic function is shown via MATLAB

code in above listing.

3.3 Solving PDEs by RBF method

We will use Inverse quadratic function as our Radial basis function. Let L be a linear di↵erential

operator and B be the boudnary operator. Let the steady problem be,

Lu = f in ! (3.15)

and the time dependent problem be,

@u

@t
= Lu in ! (3.16)

Both the PDEs have there respective boundary conditions defined on the boundary @! to make

the PDE well-posed.

Let the N distinct centers be divided into two subsets. First subset contains N1 centers where

the original PDE will be enforced upon and the second subset contains N2 centers where the

boundary condition is enforced.

So after applying the linear di↵erential operator l to the equation at the interior center points

3.4 we get,

Lu(x) =
X

↵kL(||x xk||, s) 1  k  N1 (3.17)

Now apply Boundary operator B to the equation 3.4 at the boundary center points we get,

Bu(x) =
X

↵kB(||x xk||, s) 8N1 + 1  k  N (3.18)

These can be expressed in matrix terms as,

H =

"

L

B

#

(3.19)

where

Lij = L(||xi xj ||2), 1  i  N1 1  j  N (3.20)

Chapter 3. Radial Basis functions 20

Bij = B(||xi xj ||2), N1 + 1  i  N 1  j  N (3.21)

So 3.19 forms our H matrix and will be used to compute the approximation values.

From the problem discussed in 3.4, we have that ↵ = B1u where B is the matrix with elements

given by equation 3.7 and the matrix

D = HB1 (3.22)

Now the steady problem is discretized as

Du = f (3.23)

and the solution to this is given by,

u = D1f = BH1f (3.24)

Now for the Time dependent problems

@u

@t
= Lu 2 ! (3.25)

These are discretized in space as,

@u

@t
= Lu ⇡ Du (3.26)

Now this can be solved using method of lines approach and since B matrix is always non-singular

therfore matrix D is always non-singular and this approach is well-posed for time dependent

PDEs.

Chapter 3. Radial Basis functions 21

3.4 Applications of Radial basis functions

3.4.1 Solving Heat Equation

Now, lets apply the method discussed in previous section to find the approximate solution of the

linear Heat PDE.

ut = kuxx, x 2 [0, 1], t > 0 (3.27)

with initial and boundary conditions

u(x, 0) = 6 sin(⇡x)

u(0, t) = 0

u(1, t) = 0

The exact solution is given by Yexact = 6 sin(⇡x)ek⇡2t. Using RBF method to approximate the

solution for the equation 3.27, we get the error as tabulated in the table below.

No. N (number of collocation points) Error (s = 10)

1 16 1.33E-1

2 32 2.72E-2

3 64 2.01E-3

4 80 5.56E-4

5 96 1.55E-4

6 128 5.37E-5

Table 3.1: Table showing Number of collocation points vs error for give Heat equation 3.27

The approximated numerical solution alongwith the exact solution of the given heat equation

and point wise error graph is shown in the below plots.

Chapter 3. Radial Basis functions 22

Figure 3.2: Numerical solution (N = 64) and Exact solution for Heat Equation 3.27 using RBF

Figure 3.3: Error Plot of Numerical solution for Heat Equation 3.27

Chapter 3. Radial Basis functions 23

1 function heateq(N)

2 phi = iqx(); % inverse quadratic RBF

3 s = 10; % shape parameter

4 N = 256; % number of centers

5 dt = 0.0001; % time step size

6 finalTime = 1;

7 x = linspace (0,1,N)’;

8 k = 0.01;

9 r = rbfx.distanceMatrix1d(x);

10 B = phi.rbf(r,s);

11 H2 = phi.D2(r,s,r);

12 D2 = phi.dm(B,H2 ,0,true);

13 U = exactSol(x,0);

14 t = 0;

15 while t < finalTime

16 u = rbfMisc.rk4(U,t,dt,@F);

17 t = t + dt;

18 u(1) = 0;

19 u(N) = 0;

20 U = u;

21 end

22 maxerr = max(abs(U-exact))

23 % --

24 function fp = F(u,t)

25 u(1) = 0; u(end) = 0;

26 fp = k*D2*u;

27 end

28 function ex = exactSol(x,t)

29 ex = 6*sin(pi*x)*exp(-k*(pi)^2*t);

30 end

31 % ---

32 end

33 \label{heateqn}

Listing 3.3: Heat Equation MATLAB code using RBF

Chapter 3. Radial Basis functions 24

3.4.2 Solving 1-D Di↵usion Equation

Now, lets apply the method discussed in previous section to find the approximate solution of the

linear Di↵usion PDE.

ut + aux = vuxx, x 2 [0, 1], t > 0, v > 0 (3.28)

with initial and boundary conditions

u(x, 0) = 0

u(0, t) = 1

And u(1, t) is computed using the exact solution. The exact solution is given by ,

Uexact =
1

2
erfc

⇣ x t

2
p
v
p
t

⌘

+
1

2
e

x

v erfc
⇣ x+ t

2
p
v
p
t

⌘

(3.29)

where erfc is the complementary error function. More about it can be found at

http://mathworld.wolfram.com/Erfc.html Using RBF method to approximate the solution for

the equation 3.28, we get the error as tabulated in the table below.

No. N (number of collocation points) Error (s = 10)

1 8 4.82E-1

2 16 1.33E-1

3 32 3.97E-2

4 48 9.81E-3

4 64 2.52E-3

5 96 1.66E-4

6 112 4.35E-5

Table 3.2: Table showing Number of collocation points vs error for give 1-D di↵usion equation
3.28

The approximated numerical solution alongwith the exact solution of the given heat equation

and point wise error graph is shown in the below plots.

Chapter 3. Radial Basis functions 25

Figure 3.4: Numerical solution (N = 64) and Exact solution forr 1-D Di↵usion 3.28 using RBF

Figure 3.5: Error Plot of Numerical solution forr 1-D Di↵usion Equation 3.28

Chapter 3. Radial Basis functions 26

1 function DiffusionIQ ()

2 phi = iqx(); % inverse quadratic RBF

3 s = 6; % shape parameter

4 N = 64; % number of centers

5 dt = 0.001; % time step size

6 finalTime = 0.5;

7 x = linspace (0,1,N)’;

8 r = rbfx.distanceMatrix1d(x);

9 B = phi.rbf(r,s);

10 H1 = phi.D1(r,s,r);

11 D1 = phi.dm(B,H1 ,0,true);

12 H2 = phi.D2(r,s,r);

13 D2 = phi.dm(B,H2 ,0,true);

14 U = exactSol(x,0);

15 t = 0;

16 while t < finalTime

17 u = rbfMisc.rk4(U,t,dt,@F);

18 t = t + dt;

19 u(1) = 1;

20 u(N) = exactSol(1,t);

21 U = u;

22 end

23 maxerr = max(abs(U-exact))

24 % --

25 function fp = F(u,t)

26 u(1) = 1; u(end) = exactSol(1,t);

27 fp = 0.002* D2*u -D1*u;

28 end

29 function sol = exactSol(x,t)

30 if t < dt

31 if length(x) > 1

32 sol (1) = 1;

33 sol (2: length(x)) = 0;

34 sol = sol (:);

35 else

36 sol = 0;

37 end

38 else

39 cc = 2.0* sqrt (0.002*t);

40 w11 =(x-t)/cc;

41 w22 =(x+t)/cc;

42 sol = 0.5*(erfc(w11) + exp(x/0.002) .*erfc(w22));

43 end

44 end

45 % ---

46 end

Listing 3.4: 1-D Linear Di↵usion Equation MATLAB code using RBF

Chapter 3. Radial Basis functions 27

3.4.3 Solving Nonlinear Burger Equation

Now, lets apply the method discussed in previous section to find the approximate solution of the

linear Di↵usion PDE.

ut +
1

2
u2x = vuxx, x 2 [0, 1], t > 0, v > 0 (3.30)

with initial and boundary conditions

u(x, 0) = 0

u(0, t) = 1

And u(1, t) is computed using the exact solution. The exact solution is given by ,

Uexact =
A+B + C

10A+ 2B + C
(3.31)

where, A = 0.1ea , B = 0.5eb, C = ec and, a = (x 0.5 4.95t)/2v , b = (x 0.5)/4v and

a = (x 0.625 0.75t)/2 Using RBF method to approximate the solution for the equation

3.30, we get the error as tabulated in the table below.

No. N (number of collocation points) Error (s = 10)

1 64 2.77E-2

2 96 8.20E-3

3 112 4.00E-3

4 128 1.30E-3

5 154 5.54E-4

6 196 6.74E-5

Table 3.3: Table showing Number of collocation points vs error (s = 10) for give nonlinear
Burger equation 3.30

If we change the shape parameter s = 6, then we get errors which are relatively better than the

errors at s = 10.

No. N (number of collocation points) Error (s = 6)

1 8 8.03E-1

2 16 1.70E-1

3 32 8.81E-2

4 64 2.60E-2

5 96 7.50E-3

6 112 3.90E-3

Table 3.4: Table showing Number of collocation points vs error (s = 6)for give nonlinear
Burger equation 3.30

Chapter 3. Radial Basis functions 28

For smaller values of N for s = 10 and for larger values of N for s = 6 , the system becomes ill-

conditioned.

Table 3.5 shows that a smaller s shape parameter is desired for a better accuracy.But small shape

parameter can cause conditioning problems which is to be taken care of by using algorithms

like Contour-Pade algorithm. This algorithm avoids working with the ill conditioned linear

system of equation.

No. s (Shape paramter) Error (N = 100)

1 4 5.40E-3

2 8 5.90E-3

3 16 7.00E-3

4 32 3.58E-2

5 128 9.99E-1

Table 3.5: Table showing variation of Shape paramter vs error for given Burger equation 3.30

Also, With large N , these direct RBF methods becomes too slow as it takes O(N3) time due to

Gaussian elimination. So there are methods like Domain Decomposition which can implement

this RBF method.

Chapter 3. Radial Basis functions 29

The approximated numerical solution along-with the exact solution of the given heat equation

and point wise error graph is shown in the below plots.

Figure 3.6: Numerical solution (N = 128, s = 10) and Exact solution for Burger Equation
3.30 using RBF

Figure 3.7: Error Plot of Numerical solution for Burger Equation 3.30

Chapter 3. Radial Basis functions 30

1 function burger ()

2 nu = 0.004275;

3 phi = iqx(); % inverse quadratic RBF

4 s = 10; % shape parameter

5 N = 128; % number of centers

6 dt = 0.001; % time step size

7 finalTime = 1;

8 x = rbfCenters.xKT(N, -1,1,0.999); % boudary clustered centers

9 r = rbfx.distanceMatrix1d(x);

10 B = phi.rbf(r,s);

11 H1 = phi.D1(r,s,r);

12 D1 = phi.dm(B,H1 ,0,true);

13

14 H2 = phi.D2(r,s,r);

15 D2 = phi.dm(B,H2 ,0,true);

16

17 U = exactSol(x,0);

18 t = 0;

19 while t < finalTime

20 u = rbfMisc.rk4(U,t,dt,@F);

21 t = t + dt;

22 u(1) = exactSol(-1,t);

23 u(N) = exactSol(1,t);

24 U = u;

25 end

26 maxerr = max(abs(U-exact))

27 % --

28 function fp = F(u,t)

29 u(1) = exactSol(-1,t); u(end) = exactSol(1,t);

30 fp = -0.5*D1*u.^2 + nu*D2*u;

31 end

32 function ex = exactSol(x,t)

33

34 a = 0.05*(x+0.5+4.95*t)/nu;

35 b = 0.25*(x+0.5+0.75*t)/nu;

36 c = 0.5*(x+0.625)/nu;

37 ex = (0.1* exp(-a) + 0.5* exp(-b) + exp(-c))./(exp(-a)+exp(-b)+exp(-c));

38 end

39 % ---

40 end

Listing 3.5: Non linear Burger Equation MATLAB code using RBF

Chapter 4

Conclusions

The numerical methods like , finite element methods (FEM), finite volume methods (FVM) and

finite di↵erence methods (FDM) requires a mesh to compute the approximated values. But this

mesh construction is a non-trivial problem in 3 or more dimensions.

The order of convergence of a method is calculated by the rate at which the error reaches zero

when the grid spacing reaches zero. For smooth RBFs, the method has spectral convergence.

This means that the method has an error which reduces at the rate of O(⌘N) where 0 < ⌘ < 1.

This is di↵erent from the above mentioned methods like FDM as they have algebraic convergence

rates where the error reduced by O(Nc), where c is some constant.

According to the paper ” Benft Fornberg and Natasha flyer: Accuracy of radial basis function

interpolation and derivative approximations on 1-D infinite grids.”, the approximation error

depends on the smoothness of the Radial basis function. For example: If (r) = r3 , the

convergence rate was found to be O(h4) whereas when (r) = r2 ln r , the convergence rate was

O(h3).

For both of these Radial functions the convergence is algebraic. Now, for other RBFs like Inverse

Quadratic (IQ), MultiQuadratic (MQ), it is seen that they show Spectral Convergence when

h > 0 and s > 0. It is shown in this paper that MQ converges faster than IQ. In the case

Gaussian RBF, it is seen that it has super spectral convergence as shown in the paper.

So, Them major strength of using RBF methods are the flexibility and the the accuracy obtained

when applied to scattered multi-dimensional data sets. It has been seen that the error decreases

when the Radial basis functions are made flat.The di↵erent type of convergence in which various

Radial basis functions lies are algebraic, spectral and super-spectral which is computed using

the decay rates of the fourier transformation of the radial function.

Huge amount of research has been done to find the most optimal value of the shape

parameter s. The most basic solution to find this value is to brute force all the parameter

31

Chapter 4. Conclusions 32

values and then find the one which has least maximum absolute error. But this strategy only

works if the function being approximated is already known and is also very time costly.

According to this paper ”R. Hardy. Multiquadratic equations of topography and other irregular

surfaces. Journal of Geophysical Research.” the optimal value of s is given by,

s = 0.815d where d =
1

N

X

di , 1  i  N (4.1)

where, di is the distance from the ith center to its nearest neighbor.

Another paper ” R. Franke. A critical comparison of some methods for the interpolation of

scattered data. Technical Report NPS-53-79-03, Naval Postgraduate School, 1979” gave the

formula for the shape parameter as,

s =
(1.25D)p

N
(4.2)

where D is the diameter of the smallest cirlces which enclose all the chosen centers.

There are other strategies to improve the accuracy of the approximated solution. Variable

shape parameter is one of them. In this we choose a di↵erent value of s for each center. The

benefit of this is that the RBF matrices which is formed (after using variable shape parameters)

have more distinct values which leads to a lower condition number, which means having more

accuracy.

Bibliography

[1] J. Biazar ,H. Aminikhahb. Exact and numerical solutions for non-linear Burger’s equation by

VIM

[2] Mohan K. Kadalbajoo, Lok Pati Tripathi , Alpesh Kumar.A cubic B-spline collocation

method for a numerical solution of the generalized Black–Scholes equation

[3] Seydel R.U. Tools for Computational Finance (4ed., Springer, 2009)(ISBN 3540929282)

[4] Mohan K. Kadalbajoo, Lok Pati Tripathi. A robust nonuniform B-spline collocation method

for solving the generalized Black–Scholes equation

[5] Scott A. Sarra Marshall University and Edward J. Kansa University of California, Davis.

Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of

Partial Di↵erential Equations

[6] Sarra, S A 2017 The Matlab Radial Basis Function Toolbox. Journal of Open Research

Software, 5: 8, DOI: https://doi.org/10.5334/jors.131

[7] Kansa, E J 1990 Multiquadrics – a scattered data approximation scheme with applications

to computational fluid dynamics II: Solutions to parabolic, hyperbolic, and elliptic partial

di↵erential equations. Computers and Mathematics with Applications, 19(8/9): 147–161.

DOI: https://doi. org/10.1016/0898-1221(90)90271-K

33

