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Abstract

M.Sc. (Hons.) Mathematics and B.E (Hons) Computer science

Energy-Efficient Scheduling Algorithms

by Jaskamal kainth

In this report, we discuss various energy efficient scheduling algorithms for real time parallel

applications on a heterogeneous distributed embedded system. We start with the basic in-

troduction of the parallel application which is represented as a Directed acyclic graph. Then

various commonly used terms like WCET, WCRT are explained and introduction ends with a

mathematical problem statement which is to minimize the energy consumption by the tasks on

the heterogeneous processors.

After the basic introduction, various non-DVFS scheduling algorithms like HEFT, Deadline

slack , NDES algorithms are discussed alongwith the result on a sample test task graph. then

a DVFS-enabled scheduling algorithm ,GDES(Global DVFS-enable scheduling algorithm) is

discussed and shown that when combined with a non-DVFS algorithm, the energy consumption

is minimized.

After the discussion of all the algorithms and their results on a test task graph which represents

a parallel application, analysis is done on various other task graphs like FFT, gaussian, divide

and conquer and systolic array task graph. In the end it is shown that GDES&NDES produces

the best results i.e the energy consumption is the least in this case as compared to all other

scheduling algorithms.
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Chapter 1

Introduction

The problem of minimizing the energy consumption of a real-time application with precedence

constrained tasks mostly focus on homogeneous systems, whereas heterogeneous multiprocessors

or multi-cores continue to scale up and increasingly become the key components of distributed

platforms.

Our main aim is to develop an algorithm which minimizes the energy consumption of a real

time parallel application (constrained by precedence tasks) on heterogeneous distributed

systems.

Deadline is an important design constraint for real-time applications in embedded systems,

missing the hard deadlines of these applications is not functional correctly and will cause

catastrophic consequences. Therefore, the deadline must be satisfied for a hard real-time

application. Parallel applications with precedence constrained tasks, such as fast Fourier

transform and Gaussian elimination applications, are increasing in number in heterogeneous

distributed systems. There are some typical models describing a parallel application with

precedence constrained tasks, such as directed acyclic graph (DAG), hybrid DAG (HDAG),

and task interaction graph (TIG). In this study, a parallel application is represented by a DAG,

in which the nodes represent the tasks and the edges represent the communication messages

between tasks

The first algorithm which study is HEFT (heterogenous earliest finish time). The lower bound

or the minimum schedule length of the application graph when all the tasks are executed on the

heterogeneous distributed system with the maximum frequency and this can be compute using

the HEFT algorithm.

The second algorithm with which we achieve the above is the deadline slack algorithm. In

this, we introduce the concept of deadline slack with which we assign the tasks to the processors

1



Chapter 1. Introduction 2

by minimizing the total dynamic energy consumption and satisfying the deadline constraint as

much as possible.

The third energy efficient scheduling algorithm is the NDES algorithm (non-DVFS). In this

we introduce a new concept of variable deadline slack with which we try to minimize the total

energy consumption by iteratively calling the deadline slack algorithm such that the deadline of

the application graph is satisfied as in the previous algorithm it may happen that the schedule

length of the application graph gets a higher value than the given deadling of the application.

All the above mentioned algorithms were non-DVFS(dynamic voltage frequency scaling) schedul-

ing algorithms. To get better results that means to reduce the energy consumption , there is

GDES which is global DVFS enabled scheduling algorithm. In this algorithm we scale down

the frequencies and assign to the processors with more running time so as to reduce the slack

between the tasks on the same processor. In the end we will show that the combination of

GDES&NDES algorithm gives the least energy consumption among all the other scheduling

algorithms.
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1.1 System architecture and Application models

We will consider a heterogeneous distributed embedded architecture in which multiple processors

are mounted on the common CAN (control area network) bus. one example is shown in the

figure below.

Figure 1.1: Heterogeneous distributed embedded system

Every processor in this system will contain a CPU, a random access memory , a non-volatile

memory and a NIC (network interface card).

A task which is represented as a node in the application graph executes in onr processor and

then sends messages to all of its immediate successor task which might be located on different

processors.

The parallel application which runs on this embedded systems is represented by a directed acyclic

graph (DAG) G. One example of such DAG is shown in the figure.

U represents the set of heterogeneous processors and |U | is the size of this set.

The number of nodes N is total number of tasks which is to be scheduled where each node

ni ∈ N represents a task. pred(ni) is the set of immediate predecessor tasks of ni , similarly

succ(ni) is the set of the immediate successor tasks of ni. These are used while implementing

the algorithm. The entry task or the the task with no predecessor is denoted by nentry similarly

the exit task or the task with no successor is represented by nexit. We can add a dummy entry

task or a dummy exit task with zero edge weights in case our parallel application does not have

them.
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Figure 1.2: A parallel application represented by a DAG

Now, each edge in the application graph represents the communication message from ni to nj

and the corresponding edge weight value is the WCRT (worst case response time) that is,

the amount of time to transfer the message from ni to nj if both the tasks are scheduled in a

different processor.

We have a W matrix of size |N | × |U | where each element Wi, j denotes the WCET (worst

case execution time) time taken to run the ith task on the jth processor with maximum

frequency. The table 6.4 shows the time taken by every task for each processor.

D(G) represents the deadline of the parallel application graph which should be larger than the

LB(G) (Lower bound on schedule length). The lower bound refers to the minimum schedule

length of the application when all the task are run on the processors with maximum frequency.

This schedule length can be computed using a well studied HEFT (Heterogeneous earliest finish

time) algorithm which is explained later.

Task(ni) u1 u2 u3
n1 13 16 8

n2 14 20 18

n3 12 13 9

n4 13 8 17

n5 12 13 10

n6 15 16 9

n7 4 16 11

n8 6 11 14

n9 14 12 20

n10 11 7 16

Table 1.1: WCET(Worst case execution time) matrix



Chapter 1. Introduction 5

Now, the power model consists of 3 type of powers.Static Ps , Dynamic Pd and frequency

independent dynamic power Pid. Ps can be removed only after we shut down the entire

embedded system.Pid can be removed only when we put the system to sleep mode. The Pd

power is the dynamic power which depends on the frequency.

The power consumption at the frequency f is represented by

P (f) = Ps + h(Pid + Pd) (1.1)

where h = 1 if the system is active else 0.

The total energy consumption of the parallel application is the sum of Es and Ed.

Es represents the static energy consumption of the application G and is calculated by

Es(G) =

|U |∑
i=1

(Pk,s × SL(G)) (1.2)

Ed represents the dynamic energy consumption of the application G and is calculated by

Ed(G) =

|N |∑
i=1

Ed(ni, upr(i)) (1.3)

where if we run the ith task on the jth processor then the dynamic energy consumption is ,

Ed(ni, uj) = (Pj,ind + Cj,ef × f
mj

j,max)×Wi,j (1.4)

Where Cj,ef is the effective capacitance of the jth processor, mj represents the dynamic power

exponent. Various power parameters related to the heterogeneous processors are shown in the

1.2.

Processor(uk) Pk,s Pk,d Ck,ef mk fk,low fk,max

u1 0.01 0.02 1.30 2.90 0.19 1.0

u2 0.01 0.05 0.50 2.10 0.32 1.0

u3 0.01 0.04 0.20 3.00 0.46 1.0

Table 1.2: Power parameters of the Processors
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1.2 Problem Description

The problem reduces to assign the tasks to the processors with certain frequencies and thus

minimizing the total energy consumption of the application graph in this process such that the

deadline constraint and the frequency constraint is satisfied.

Etotal(G) = Es(G) + Ed(G) (1.5)

such that SL(G) ≤ D(G) , where D(G) is the deadline set by the user

and fpr(i),low ≤ fi ≤ fpr(i),max, where pr(i) is the processor index assigned to the ith task.



Chapter 2

The HEFT Algorithm

As, scheduling tasks of the parallel application on multiprocessors is a NP-Hard optimization

problem so this is the first Heuristic algorithm with which we will get an initial mapping or

distribution of task on the heterogeneous distributed system such that deadline and frequency

constraint is satisfied while achieving lowest energy possible.

HEFT is a type of List scheduling algorithm and consist of two phases: task prioritization and

task allocation. A DAG is used to represent a parallel application and HEFT is used to obtain a

lower bound of a parallel application which will be used by other algorithms presented later in

the thesis. With this lower bound value we can provide a deadline of the graph which is greater

than or equal to the lower bound of the graph achieved by the HEFT algorithm.

The two phases of the algorithm are:

1. Task prioritization: Every task which is represented by a node of the graph is given a rank

values which is computed using the equation.

rank(ni) = Wi + max
nj∈succ(ni)

Ci,j + rank(nj) (2.1)

where Wi is the average WCET(Worst case execution time) value of the task ni and is

given by,

Wi = (
∑|U |

j=1Wi,j)/(|U |) where |U | is the number of processors.

The rank equation is a recursive equation and hence we can use Depth first search on the

given DAG to compute the ranks of every tasks in linear time O(number of nodes = tasks).

Listing 2.1 shows the DFS approach to compute the ranks.

7



Chapter 2. The HEFT Algorithm 8

1 long double calculate_rank(int u)

2 {

3 long double val = 0;

4 for (auto v: graph[u])

5 val = max(val ,C[u][v] + calculate_rank(v));

6 return _rank[u] = wAvg[u] + val;

7 }

Listing 2.1: Method to compute Ranks for Task prioritization phase

2. Task allocation: We compute EST (Earliest start time) and EFT (Earliest finish time) of

the task ni on the processor uj with the maximum frequency. Since we will allocate tasks

with the maximum frequencies, this approach is termed as Non-DVFS (Dynamic voltage

and frequency scaling).

EST (ni, uk) = max (available[k], max
nx∈pred(ni)

(AFT (nx) + C ′x,i)) (2.2)

For, entry node of the graph( node with no predecessor) the EST value is 0 for all the

processors.EFT of the ith task is given by,

EFT (ni, uk) = EST (ni, uk) + wi,k (2.3)

where, AFT (ni) represents the actual finish time of the ith task , pred(ni) represents the

immediate parent nodes of the ith node in the given DAG, available[k] represents the time

at which the kth processor is available for the task scheduling. We will keep on updating

the AFT and available array values during the list scheduling for the calculation of the

EST and EFT. C ′x,i is 0 if x is equal to i and is equal to the WCRT (edge value) between

task x and task i in the given DAG.
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So after computing the EFT value of the ith node, this node is allocated to the processor which

has the least EFT value and this way of allocating task is known as insertion based scheduling

strategy.The HEFT algorithm has a time complexity of O(|N |2 ∗ |U |) , where N is the number

of tasks(Nodes) and U is the number of processors.

So, if we run this algorithm on the given DAG 1.2 , we get a Lowerbound of 81. The total

energy consumed is Etotal(G) = Es(G) + Ed(G) = 2.43 + 84.12 = 86.55. The table showing all

the AST(actual start time) and the AFT(actual finish time) values alongwith the information of

the processor to which every task is assigned is shown below.

Task Processor AST (ni) AFT (ni) fi,k Ed(ni)

n1 u3 0 8 1.00 1.92

n2 u1 26 40 1.00 18.48

n3 u3 8 27 1.00 4.56

n4 u2 17 25 1.00 4.40

n5 u3 27 37 1.00 2.40

n6 u2 25 41 1.00 8.80

n7 u3 37 48 1.00 2.64

n8 u1 64 70 1.00 7.92

n9 u1 50 64 1.00 18.48

n10 u1 70 81 1.00 14.52

Table 2.1: Task Assignment of the Parallel Application (DAG) using HEFT Algorithm

For this run, the power parameters of the processors are given in Table 1.2 and the WCET

values are given in Table 6.4.
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The Deadline Slack Algorithm

With HEFT algorithm we get an initial task assignment and the lower bound of the parallel

application(DAG).The demerit of HEFT algorithm is that we didn’t consider the energy con-

sumption of the task on the processor while we assign the task to a processor.

In Deadline slack Algorithm, we will assign a deadline to each task in the given DAG. The

deadline slack of a parallel application is the difference between the deadline and the lower bound

of the application.

DS(G) = D(G)− LB(G) (3.1)

Now, using HEFT algorithm we can compute the LB(G) that is the lower bound of the graph

and since we know the deadline , we can compute the deadline slack of the graph. So, with this

we can compute deadline of every task node as ,

D(ni) = LB(ni) + DS(G) (3.2)

where, D(ni) is the deadline of the ith task node and LB(ni) is the lowerbound of the ith task

node which is equal to the AFT (ni) which we got using the initial run of HEFT algorithm.

In HEFT, it assigned each task to the processor with the minimum EFT with the maximum

frequency (non-DVFS),but Deadline slack assigns each task to the processor with the maximum

frequency and the minimum energy value such that the deadline constraint of that task is

satisfied, which is given by AFT (ni) ≤D(ni). Similar to HEFT, Deadline slack algorithm is a

non-DVFS scheduling algorithm since it doesnt́ scale frequencies while assigning tasks to the

processors but assign them with the maximum frequency and hence the execution time of the

ith task node on the jth processor takes time Wi,j (WCET).

Similar to HEFT, in task prioritization phase the task nodes are ranked according to the rank

10
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values in the decreasing order. In the task allocation phase, the algorithm assigns the task nodes

to the processor with the minimum dynamic energy consumption such that the deadline of the

task node is satisfied. If there exist no processor in which this deadline constraint of the task

node is not satisfied then the task node is assigned to a processor with the least EFT value

which is similar to the HEFT task allocation step.

The Deadline slack algorithm has a time complexity of O(|N |2 ∗ |U |) where N is the number of

tasks(Nodes) and U is the number of processors, which is similar to that of HEFT.

So, if we run this algorithm on the given DAG 1.2, The total energy consumed is Etotal(G) =

Es(G) + Ed(G) = 3.06 + 63.74 = 66.80. The table showing all the AST(actual start time) and

the AFT(actual finish time) values alongwith the information of the processor to which every

task is assigned is shown below.

Task Processor AST (ni) AFT (ni) fi,k Ed(ni)

n1 u3 0 8 1.00 1.92

n2 u2 26 46 1.00 11.00

n3 u3 8 27 1.00 4.56

n4 u3 27 44 1.00 4.08

n5 u3 44 54 1.00 2.40

n6 u1 22 37 1.00 19.80

n7 u1 50 54 1.00 5.28

n8 u2 71 82 1.00 6.05

n9 u3 62 82 1.00 4.80

n10 u2 95 102 1.00 3.85

Table 3.1: Task Assignment of the Parallel Application (DAG) using Deadline Slack Algorithm

For this run, the power parameters of the processors are given in Table 1.2 and the WCET

values are given in Table 6.4.

As we can see that in this example, the schedule length of the application exceeds the deadline

of the graph which is a demerit of the Deadline slack algorithm and thus this needs further

optimisations.
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The NDES Algorithm

In Deadline slack algorithm , we can get a schedule length greater than the deadline of the

application graph. This happens due to the fact that the system is heterogeneous and there is

communication time between tasks if they are not assigned to the same processor. For example,

as we can see in the table 5.1, all the predecessor tasks of n10 has its deadlines satisfied but in

case of n10 task, the schedule length surpasses the deadline which is set to 100. This happens as

the EST of this task is 95 which is due to the fact that we take maximum for all predecessor(

see definition of EST) and hence, EST (n10) = 82 + 13 = 95 from the n9 task. This 13 unit of

time is consumed as both tasks are assigned to different processors and 13 is the communication

time in between them and hence the AFT of the exit node is 102 which is greater than 100.

This can be handled if we set a deadline slack for every task but since there are so many

possibilities we fix a deadline slack for each task and then vary this slack to obtain a task

allocation which satisfies the deadline constraint of the application graph. A variable deadline

slack V DS(G) is defined for the application graph. We will iterate this V DS(G) to obtain a task

assignment which satisfies the deadline constraint and also the energy consumption is minimized.

D(ni) = LB(ni) + V DS(G) (4.1)

and for ni = nexit , D(ni) = D(G). If the schedule length obtained by deadline slack algorithm

is greater than deadline of the application graph then all the variable deadline slacks can be

traversed from [DS(G)− S(G), 0]. While traversing, we can obtain an allocation which satisfies

the constraints with the minimum dynamic energy consumption minimized.

If the schedule length obtained by deadline slack algorithm is less than deadline of the application

graph then again we can try to optimize the result further by traversing the V DS(G) from

[DS(G), X] where X = D(G)−max(LB(ni)) since the finish time of all the tasks cannot exceed

the deadline of the application graph.

12



Chapter 4. The NDES Algorithm 13

Following the NDES algorithm, we are assured that we can obtain a safe schedule length with

minimum total energy consumption as possible , where all the tasks are running with maximum

frequency since NDES algorithm follows the non-DVFS technique.

The NDES algorithm has a time complexity of O(c ∗ |N |2 ∗ |U |) where N is the number of

tasks(Nodes), U is the number of processors and c is the number of iterations of the variable

deadline slack which depends on the increment parameter.

So, if we run this algorithm on the given DAG 1.2, The total energy consumed is Etotal(G) =

Es(G) + Ed(G) = 2.82 + 44.49 = 47.31. The table showing all the AST(actual start time) and

the AFT(actual finish time) values alongwith the information of the processor to which every

task is assigned is shown below.

As we can see that the static energy is reduced from the previous Deadline slack algorithm since

in this case the schedule length obtained is 94 which is less than what we got with deadline slack

algorithm(102). Also the dynamic energy consumption is significantly reduced from 63.74 to

44.49.

Task Processor AST (ni) AFT (ni) fi,k Ed(ni)

n1 u3 0 8 1.00 1.92

n2 u3 27 45 1.00 4.32

n3 u3 8 27 1.00 4.56

n4 u2 17 25 1.00 4.40

n5 u2 25 38 1.00 7.15

n6 u3 45 54 1.00 2.16

n7 u1 50 54 1.00 5.28

n8 u2 69 80 1.00 6.05

n9 u3 54 74 1.00 4.80

n10 u2 87 94./ 1.00 3.85

Table 4.1: Task Assignment of the Parallel Application (DAG) using NDES Algorithm

For this run, the power parameters of the processors are given in Table 1.2 and the WCET

values are given in Table 6.4.
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The GDES Algorithm

GDES or Global DVFS-Enabled Energy efficient scheduling algorithm solves the prob-

lem of task scheduling using the DVFS technology.NDES algorithm does not scale frequencies of

the task nodes and all the tasks are scheduled with maximum frequency. Also, there exists lots

of free slacks between the tasks on the processors.

GDES algorithm eliminates these slacks as much as possible by scaling down the frequencies on

which the task nodes run on the processor to minimimze the energy utilization. The key point is

of GDES algorithm is that the schedule length of the application is always equal to the deadline

of the input graph. Some new terms will be introduced to implement DVFS-enabled scheduling

algorithm and they are:

• Earliest start time(EST): In HEFT algorithm, we considered availability of the processor

also while computing the earliest start time of the ith task on the kth processor but in

GDES its not excluded as task can be re-scheduled to other processor if it consumes less

energy and satisfies the constraints.

EST (ni, uk) = max
nx∈pred(ni)

(AFT (nx) + C ′x,i) (5.1)

EST is 0 for the entry task node.

• Latest finish time(LFT): Latest finish time is computed for task for every processor and

this alongwith the EST is used to find the suitable slack on which we can assign the task.

LFT (ni, uk) = max
nx∈succ(ni)

(AST (nx)− C ′x,i) (5.2)

LFT is D(G) for the exit task node.

• Available Slacks: After getting an initial mapping of the task distribution , there are slacks

left in between the two tasks in the same processor. This can computed and the set of

14
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available slacks are used to find the best suitable slack on which the energy utilization is

minimized for the given task such that all the constraints are also satisfied. To find the

available slacks for a task node ni , ni should be removed from the task distribution.

1 vector <vector <pair <int ,int >>> computeSlacks(vector <tasks > info , int id)

2 {

3 vector <vector <pair <int ,int >>> use ,ret; // will store the final answer

4 use.resize(NUM_PROC);

5 for(auto t: info) // iterating through the task distribution

6 {

7 if(t.id != id) // exclude the current task

8 use[t.proc_num ]. push_back ({t.st_time ,t.en_time });

9 }

10 for(int i = 0; i < NUM_PROC; i++)

11 sort(use[i].begin(),use[i].end()); // sort the task mappings intervals

12

13 for(int i = 0; i < NUM_PROC; i++)

14 {

15 vector <pair <int ,int >> temp;

16 if(use[i].size() == 0) // if no task runs on the processor then available

slack = [0,D(G)]

17 {

18 temp.push_back ({0,D_G});

19 ret.push_back(temp);

20 continue;

21 }

22 for(int j = 0; j < use[i].size(); j++)

23 {

24 if(j == 0) // first task on the jth processor

25 {

26 if(use[i][0]. first != 0)

27 temp.push_back ({0,use[i][0]. first});

28 }

29 if(j != 0 && use[i][j]. first != D_G && use[i][j-1]. second != use[i][j].

first) // middle tasks

30 {

31 temp.push_back ({use[i][j-1]. second ,use[i][j].first });

32 }

33 if(j == use[i].size() -1) // last task on the jth processor

34 {

35 if(use[i][j]. first != D_G && use[i][j]. second != D_G)

36 temp.push_back ({use[i][j].second ,D_G});

37 }

38 }

39 ret.push_back(temp);

40 }

41 return ret;

42 }

43

Listing 5.1: Method to compute available slacks
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• Maximum execution time(MET) To handle the precedence constraints, we can only assign

tasks to those slacks among the available ones which satisfies the following condition.

MET (ni, uk) ≥ wi,k (5.3)

where MET is defined as,

MET (ni, uk) = LFT ′(ni, uk)− EST ′(ni, uk) (5.4)

such that,

EST ′(ni, uk) = max(EST (ni, uk), leftInterval(Slack)) (5.5)

LFT ′(ni, uk) = min(LFT (ni, uk), rightInterval(Slack)) (5.6)

So, if the condition 5.3 is not satisfied then the task cannot be assigned to the current

slack. If it is satisfied we find that slack in which the energy utilization is minimized.

Now, since we have the slack on which we can assign the task such that the energy consumption

is minimzed we can compute the frequency with which the task will run on the processor. We

can compute the maximum time the task can take if it runs on a processor using the lowest

frequency which is given and this UBET(Upper bound execution time) can be computed by,

UBET (ni, uk) =
fk,max

fk,low
× wi,k (5.7)

So, the Maximum execution time can be updated as MET (ni, uk) = min(MET (ni, uk), UBET (ni, uk)

Since with maximum frequency, the ni task takes wi,k time on the uk processor, therefore the

frequency with which it runs is equals to ,

fi =
wi,k

MET (ni, uk)
× fk,max (5.8)

with this frequency we can compute the dynamic energy consumption for the ni task node which

runs on the uk processor using equation 1.3.

After this, we can assign the ni task node to the uk processor with energy Ed and the actual

finish time and actual start time can be computed as,

AFT (ni) = LFT ′(ni, uk) (5.9)

and

AST (ni) = LFT ′(ni, uk)−MET (ni, uk) (5.10)
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Note that GDES algorithm requires an initial task distribution which can be computed using any

scheduling algorithm like HEFT or NDES. Later we will show that GDES&NDES algorithm

gives the best results.

So, if we run this algorithm on the given DAG 1.2, The total energy consumed is Etotal(G) =

Es(G) + Ed(G) = 3.00 + 33.16 = 36.16. The table showing all the AST(actual start time) and

the AFT(actual finish time) values alongwith the information of the processor to which every

task is assigned is shown below.

As we can see that the static energy is reduced from the previous NDES algorithm since in this

case the schedule length is 100 which is equal to the deadling of the application graph. Also the

dynamic energy consumption is significantly reduced from 44.49 to 33.16

Task Processor AST (ni) AFT (ni) fi,k Ed(ni)

n1 u3 0 8 1.00 1.92

n2 u3 27 45 1.00 4.32

n3 u3 8 27 1.00 4.56

n4 u2 17 31 0.57 2.86

n5 u1 19 41 0.54 5.37

n6 u3 45 54 1.00 2.16

n7 u1 50 70 0.20 0.64

n8 u2 69 87 0.61 4.10

n9 u3 54 74 1.00 4.80

n10 u2 87 100 1.00 2.42

Table 5.1: Task Assignment of the Parallel Application (DAG) using GDES&NDES Algorithm

For this run, the power parameters of the processors are given in Table 1.2 and the WCET

values are given in Table 6.4.



Chapter 6

Analysis and Conclusion

In previous chapters we studied non-DVFS scheduling algorithms like HEFT, Deadline slack,

NDES algorithm and DVFS-enable scheduling algorithms like GDES. Also we saw that we

can combine GDES with HEFT as well as NDES to get better results.

We will test the above mentioned algorithms on some sample test graphs like ,

• Fast Fourier transform task graph

• Gaussian elimination task graph

• Divide and conquer task graph

18
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6.1 Fast Fourier transform task graph

A FFT task graph has 2 + (n + 1)2n task nodes and (n + 1)2n+1 communication edges where 2n

is the number of task nodes on the second level of the given application task graph. For example,

in the given sample graph 6.1, n = 2 so the number of nodes is equal to 14 and the number of

edges is 24.

Task(ni) u1 u2 u3
n1 14 16 9

n2 13 19 18

n3 11 13 19

n4 13 8 17

n5 12 13 10

n6 13 16 9

n7 7 15 11

n8 5 11 4

n9 18 12 20

n10 21 7 16

n11 11 5 13

n12 12 4 15

n13 15 2 11

n14 25 4 21

Table 6.1: WCET(Worst case execution time) matrix for FFT application graph 6.1

From the result figure 6.2 we can conclude that,

1. Maximum energy consumption is with the HEFT algorithm and the energy consumption

by HEFT does not change by the change in the deadline of task graph. This is because

HEFT does not consider energy minimization while assigning tasks to the processor but

only check the precedence constrains through EST and EFT.

2. GDES&NDES algorithm always produce better or similar results than the NDES algorithm.

This can be explained by the fact that GDES is run on the task distribution obtained by the

NDES algorithm and GDES using DVFS technology as well as the slack reduction to further

minimize the energy consumption by re-distribution of the tasks. Similarly,GDES&HEFT

algorithm always produce better or similar results than the HEFT algorithm.

3. As the deadline increases the GDES&NDES algorithm consumes less energy than all

other algorithms and when the deadline is far away from the schedule length then both

GDES&NDES and GDES&HEFT gives almost similar results [convergence point].
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Figure 6.1: A sample fast Fourier transform task graph for n = 2.

Figure 6.2: Results of the FFT application graph 6.1

6.2 Gaussian elimination task graph

A Gaussian elimination task graph has (n2 + n + 4)/2 task nodes and n2 + 1 communication

edges where n is the number of task nodes on the second level of the given application task

graph. For example, in the given sample graph 6.3, n = 3 so the number of nodes is equal to 8

and the number of edges is 10.

Task(ni) u1 u2 u3
n1 14 16 9

n2 13 19 18

n3 11 13 19

n4 13 8 17

n5 12 13 10

n6 13 16 9

n7 7 15 11

n8 12 15 11

Table 6.2: WCET(Worst case execution time) matrix for Gaussian elim. task graph 6.3

From the result figure 6.4 we can conclude that,
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1. Similar to FFT task graph, Maximum energy consumption is with the HEFT algorithm

and the energy consumption by HEFT does not change by the change in the deadline of

task graph. GDES&NDES algorithm always produce better or similar results than the

NDES algorithm.As the deadline increases the GDES&NDES algorithm consumes less

energy than all other algorithms

2. Other observation is that the results of GDES&NDES are alternate for gaussian elimination

application but still it gives the best results among all other algorithms. When Deadline is

1.2ms, in this case the task n7 gets assigned to the processor u3 and not on u1 as it does

not satisfy the deadline constraint. But once we increase the deadline to 1.4ms then in this

case the task n7 gets assigned to u1 with energy consumption lesser than previous case but

now due to this greedy choice , the task n2 in this case is assigned to u3 with maximum

frequency as there is no other choice left at that step of task allotment. So in this case n2

consumes 4.32 energy as compared to previous case where n2 consumed 2.39 energy.

this provides a good example that, this greedy choice during the task allotment can result

in the increase in the energy consumption of the application graph.

Figure 6.3: A sample Gaussian elimination task graph for n = 3.

6.3 Divide and conquer task graph

A sample divide and conquer task graph has 3(2n−1)− 2 task nodes and 2n+1− 4 communication

edges where n is the number of task nodes on the path from the root task node(Entry node) to
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Figure 6.4: Results of the Gaussian elimination application graph 6.3

the middle level of the application graph. For example, in the given sample graph 6.5, n = 3 so

the number of nodes is equal to 10 and the number of edges is 12.

Task(ni) u1 u2 u3
n1 14 16 9

n2 13 19 18

n3 11 13 19

n4 13 8 17

n5 12 13 10

n6 13 16 9

n7 7 15 11

n8 5 11 14

n9 18 12 20

n10 21 7 16

Table 6.3: WCET(Worst case execution time) matrix for Divide and conquer task graph 6.5

Figure 6.5: A sample Divide and conquer task graph for n = 3.
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Figure 6.6: Results of the Divide and conquer application graph 6.5

6.4 Conclusion

So, we evaluated 2 sets of algorithms (non-DVFS and DVFS). Non-DVFS scheduling algorithms

included HEFT, Deadline slack, NDES and DVFS scheduling algorithm included GDES&HEFT

and GDES&NDES. The analysis was done on various test graphs like FFT, Gaussian elimination

, Divide and conquer which represented a parallel application. All the analysis was done on a

heterogeneous distributed embedded system.

We observed that HEFT algorithm energy consumption does not change with the change in dead-

line of the application graph.From the above derived results and graphs, it can be concluded that

the GDES&NDES which is a DVFS enabled scheduling algorithm gives the best results i.e the

energy consumption after task distribution on the heterogeneous system of processors is the least.

We can also conclude that , combination of DVFS enabled and non-DVFS scheduling algorithm

gives the better result than only non-DVFS scheduling algorithm. Example: GDES&HEFT

always gives better results than HEFT and similarly, GDES&NDES always gives better results

than NDES.

Algorithm FFT Gaussian Divide and conquer

HEFT 119.99 43.50 90.50

NDES 46.92 28.08 38.61

GDES&HEFT 39.21 36.14 39.11

GDES&NDES 35.33 20.83 27.77

Table 6.4: Energy consumption (Algorithm - Task graph) for Deadline = 150
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