
Polynomials and the
Fast Fourier Transform (FFT)

Algorithm Design and Analysis
(Week 7)

1

Battle Plan

• Polynomials

– Algorithms to add, multiply and evaluate polynomials

– Coefficient and point-value representation

• Fourier Transform

– Discrete Fourier Transform (DFT) and inverse DFT to
translate between polynomial representations

– “A Short Digression on Complex Roots of Unity”

– Fast Fourier Transform (FFT) is a divide-and-conquer
algorithm based on properties of complex roots of unity

2

Polynomials

• A polynomial in the variable 𝑥 is a representation of
a function
𝐴 𝑥 = 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0

as a formal sum 𝐴 𝑥 = 𝑎𝑗𝑥
𝑗𝑛−1

𝑗=0 .

• We call the values 𝑎0, 𝑎1,… , 𝑎𝑛−1 the coefficients of
the polynomial

• 𝐴 𝑥 is said to have degree 𝑘 if its highest nonzero
coefficient is 𝑎𝑘.

• Any integer strictly greater than the degree of a
polynomial is a degree-bound of that polynomial

3

Examples

• 𝐴 𝑥 = 𝑥3 − 2𝑥 − 1

– 𝐴(𝑥) has degree 3

– 𝐴(𝑥) has degree-bounds 4, 5, 6, … or all values > degree

– 𝐴(𝑥) has coefficients (−1,−2, 0, 1)

• 𝐵 𝑥 = 𝑥3 + 𝑥2 + 1

– 𝐵(𝑥) has degree 3

– 𝐵(𝑥) has degree bounds 4, 5, 6, … or all values > degree

– 𝐵(𝑥) has coefficients (1, 0, 1, 1)

4

Coefficient Representation

• A coefficient representation of a polynomial

𝐴 𝑥 = 𝑎𝑗𝑥
𝑗𝑛−1

𝑗=0 of degree-bound 𝑛 is a vector of

coefficients 𝑎 = 𝑎0, 𝑎1, … , 𝑎𝑛−1 .

• More examples

– 𝐴 𝑥 = 6𝑥3 + 7𝑥2 − 10𝑥 + 9 (9, −10, 7, 6)

– 𝐵 𝑥 = −2𝑥3 + 4𝑥 − 5 (−5, 4, 0, −2)

• The operation of evaluating the polynomial 𝐴(𝑥) at
point 𝑥0 consists of computing the value of 𝐴 𝑥0 .

• Evaluation takes time Θ(𝑛) using Horner’s rule

𝐴(𝑥0) = 𝑎0 + 𝑥0(𝑎1 + 𝑥0(𝑎2 +⋯+ 𝑥0 𝑎𝑛−2 + 𝑥0 𝑎𝑛−1 ⋯))

5

Adding Polynomials

• Adding two polynomials represented by the
coefficient vectors 𝑎 = (𝑎0, 𝑎1, … , 𝑎𝑛−1) and
𝑏 = (𝑏0, 𝑏1, … , 𝑏𝑛−1) takes time Θ(𝑛).

• Sum is the coefficient vector 𝑐 = (𝑐0, 𝑐1, … , 𝑐𝑛−1),
where 𝑐𝑗 = 𝑎𝑗 + 𝑏𝑗 for 𝑗 = 0,1,… , 𝑛 − 1.

• Example

 𝐴 𝑥 = 6𝑥3 + 7𝑥2 − 10𝑥 + 9 (9,−10, 7, 6)

 𝐵 𝑥 = − 2𝑥3 + 4𝑥 − 5 (−5, 4, 0, −2)

 𝐶(𝑥) = 4𝑥3 + 7𝑥2 − 6𝑥 + 4 (4,−6,7,4)

6

Multiplying Polynomials

• For polynomial multiplication, if 𝐴(𝑥) and 𝐵(𝑥) are
polynomials of degree-bound n, we say their product
𝐶(𝑥) is a polynomial of degree-bound 2𝑛 − 1.

• Example

 6𝑥3 + 7𝑥2 − 10𝑥 + 9

 − 2𝑥3 + 4𝑥 − 5

 − 30𝑥3 − 35𝑥2 + 50𝑥 − 45

 24𝑥4 + 28𝑥3 − 40𝑥2 + 36𝑥

 − 12𝑥6 − 14𝑥5 + 20𝑥4 − 18𝑥3

 − 12𝑥6 − 14𝑥5 + 44𝑥4 − 20𝑥3 − 75𝑥2 + 86𝑥 − 45

7

Multiplying Polynomials

• Multiplication of two degree-bound n polynomials
𝐴(𝑥) and 𝐵(𝑥) takes time Θ 𝑛2 , since each
coefficient in vector 𝑎 must be multiplied by each
coefficient in vector 𝑏.

• Another way to express the product C(x) is

 𝑐𝑗 𝑥
𝑗2𝑛−1

𝑗=0 , where 𝑐𝑗 = 𝑎𝑘𝑏𝑗−𝑘
𝑗
𝑘=0 .

• The resulting coefficient vector 𝑐 = (𝑐0, 𝑐1, … 𝑐2𝑛−1)
is also called the convolution of the input vectors 𝑎
and 𝑏, denoted as 𝑐 = 𝑎⨂𝑏.

8

Point-Value Representation

• A point-value representation of a polynomial 𝐴(𝑥)
of degree-bound 𝑛 is a set of 𝑛 point-value pairs

𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , 𝑥𝑛−1, 𝑦𝑛−1

such that all of the 𝑥𝑘 are distinct and 𝑦𝑘 = 𝐴(𝑥𝑘)
for 𝑘 = 0, 1,… , 𝑛 − 1.

• Example 𝐴 𝑥 = 𝑥3 − 2𝑥 + 1

– 𝑥𝑘 0, 1, 2, 3

– 𝐴(𝑥𝑘) 1, 0, 5, 22

• Using Horner’s method, 𝒏-point evaluation takes
time Θ(𝑛2).

9

* 0, 1 , 1, 0 , 2, 5 , 3, 22 +

Point-Value Representation

• The inverse of evaluation is called interpolation
– determines coefficient form of polynomial from point-

value representation

– For any set * 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , 𝑥𝑛−1, 𝑦𝑛−1 + of 𝑛 point-
value pairs such that all the 𝑥𝑘 values are distinct, there is
a unique polynomial 𝐴(𝑥) of degree-bound 𝑛 such that
𝑦𝑘 = 𝐴(𝑥𝑘) for 𝑘 = 0, 1, … , 𝑛 − 1.

• Lagrange’s formula

𝐴 𝑥 = 𝑦𝑘
 (𝑥 − 𝑥𝑗)𝑗≠𝑘

 (𝑥𝑘 − 𝑥𝑗)𝑗≠k

𝑛−1

𝑘=0

• Using Lagrange’s formula, interpolation takes time
Θ(𝑛2).

10

Example

• Using Lagrange’s formula, we interpolate the point-
value representation 0, 1 , 1, 0 , 2, 5 , 3, 22 .

– 1
𝑥−1 (𝑥−2)(𝑥−3)

(0−1)(0−2)(0−3)
=
𝑥3−6𝑥2+11𝑥−6

−6
=
−𝑥3+6𝑥2−11𝑥+6

6

– 0
(𝑥−0)(𝑥−2)(𝑥−3)

(1−0)(1−2)(1−3)
= 0

– 5
(𝑥−0)(𝑥−1)(𝑥−3)

(2−0)(2−1)(2−3)
= 5
𝑥3−4𝑥2+3𝑥

−2
=
−15𝑥3+60𝑥2−45𝑥

6

– 22
(𝑥−0)(𝑥−1)(𝑥−2)

(3−0)(3−1)(3−2)
= 22

𝑥3−3𝑥2+2𝑥

6
=
22𝑥3−66𝑥2+44𝑥

6

–
1

6
6𝑥3 + 0𝑥2 − 12𝑥 + 6

– 𝑥3 − 2𝑥 + 1

11

Adding Polynomials

• In point-value form, addition 𝐶 𝑥 = 𝐴 𝑥 + 𝐵(𝑥) is
given by 𝐶 𝑥𝑘 = 𝐴 𝑥𝑘 + 𝐵(𝑥𝑘) for any point 𝑥𝑘.

– 𝐴: 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , 𝑥𝑛−1, 𝑦𝑛−1

– 𝐵: 𝑥0, 𝑦0
′ , 𝑥1, 𝑦1

′ , … , 𝑥𝑛−1, 𝑦𝑛−1
′

– 𝐶: * 𝑥0, 𝑦0 + 𝑦0
′ , 𝑥1, 𝑦1 + 𝑦1

′ , … , 𝑥𝑛−1, 𝑦𝑛−1 + 𝑦𝑛−1
′ +

• 𝐴 and 𝐵 are evaluated for the same 𝑛 points.

• The time to add two polynomials of degree-bound 𝑛
in point-value form is Θ(𝑛).

12

Example

• We add 𝐶 𝑥 = 𝐴 𝑥 + 𝐵(𝑥) in point-value form

– 𝐴 𝑥 = 𝑥3 − 2𝑥 + 1

– 𝐵 𝑥 = 𝑥3 + 𝑥2 + 1

– 𝑥𝑘 = (0, 1, 2, 3)

– 𝐴: 0, 1 , 1, 0 , 2, 5 , 3, 22

– 𝐵: * 0, 1 , 1, 3 , 2, 13 , 3, 37 +

– 𝐶: * 0, 2 , 1, 3 , 2, 18 , 3, 59 +

13

Multiplying Polynomials

• In point-value form, multiplication 𝐶 𝑥 = 𝐴 𝑥 𝐵(𝑥)
is given by 𝐶 𝑥𝑘 = 𝐴 𝑥𝑘 𝐵(𝑥𝑘) for any point 𝑥𝑘.

• Problem: if 𝐴 and 𝐵 are of degree-bound 𝑛, then 𝐶 is
of degree-bound 2𝑛.

• Need to start with “extended” point-value forms for
𝐴 and 𝐵 consisting of 2𝑛 point-value pairs each.

– 𝐴: 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , 𝑥2𝑛−1, 𝑦2𝑛−1

– 𝐵: 𝑥0, 𝑦0
′ , 𝑥1, 𝑦1

′ , … , 𝑥2𝑛−1, 𝑦2𝑛−1
′

– 𝐶: * 𝑥0, 𝑦0𝑦0
′ , 𝑥1, 𝑦1𝑦1

′ , … , 𝑥2𝑛−1, 𝑦2𝑛−1𝑦2𝑛−1
′ +

• The time to multiply two polynomials of degree-
bound 𝑛 in point-value form is Θ(𝑛).

14

Example

• We multiply 𝐶 𝑥 = 𝐴 𝑥 𝐵(𝑥) in point-value form

– 𝐴 𝑥 = 𝑥3 − 2𝑥 + 1

– 𝐵 𝑥 = 𝑥3 + 𝑥2 + 1

– 𝑥𝑘 = (−3,−2,−1, 0, 1, 2, 3) We need 7 coefficients!

– 𝐴: −3,−17 , −2,−3 , −1,1 , 0, 1 , 1, 0 , 2, 5 , 3, 22

– 𝐵: * −3,−20 , −2,−3 , −1, 2 , 0, 1 , 1, 3 , 2, 13 , 3, 37 +

– 𝐶: * −3,340 , −2,9 , −1,2 , 0, 1 , 1, 0 , 2, 65 , 3, 814 +

15

The Road So Far

• Can we do better?
– Using Fast Fourier Transform (FFT) and its inverse, we can do

evaluation and interpolation in time Θ(𝑛 log 𝑛).

• The product of two polynomials of degree-bound 𝑛 can
be computed in time Θ(𝑛 log 𝑛), with both the input and
output in coefficient form.

16

𝑎0, 𝑎1, … , 𝑎𝑛−1
𝑏0, 𝑏1, … , 𝑎𝑛−1

𝑐0, 𝑐1, … , 𝑐𝑛−1

𝐴 𝑥0 , 𝐵 𝑥0
𝐴 𝑥1 , 𝐵 𝑥1
⋮

𝐴 𝑥2𝑛−1 , 𝐵(𝑥2𝑛−1)

𝐶 𝑥0
𝐶 𝑥1
⋮

𝐶(𝑥2𝑛−1)

Ordinary multiplication
Time Θ(𝑛2)

Pointwise multiplication
Time Θ(𝑛)

Evaluation
Time Θ(𝑛2)

Interpolation
Time Θ(𝑛2)

Coefficient
representations

Point-value
representations

Fourier Transform

• Fourier Transforms originate from signal processing

– Transform signal from time domain to frequency domain

– Input signal is a function mapping time to amplitude

– Output is a weighted sum of phase-shifted sinusoids of
varying frequencies

17

A
m

p
lit

u
d

e

Time

W
ei

gh
t

Frequency

Fast Multiplication of Polynomials

• Using complex roots of unity
– Evaluation by taking the Discrete Fourier Transform (DFT)

of a coefficient vector

– Interpolation by taking the “inverse DFT” of point-value
pairs, yielding a coefficient vector

– Fast Fourier Transform (FFT) can perform DFT and inverse
DFT in time Θ(𝑛 log 𝑛)

• Algorithm
1. Add 𝑛 higher-order zero coefficients to 𝐴(𝑥) and 𝐵(𝑥)

2. Evaluate 𝐴(𝑥) and 𝐵(𝑥) using FFT for 2𝑛 points

3. Pointwise multiplication of point-value forms

4. Interpolate 𝐶(𝑥) using FFT to compute inverse DFT

18

Complex Roots of Unity

• A complex 𝒏th root of unity (1) is a complex number
𝜔 such that 𝜔𝑛 = 1.

• There are exactly 𝑛 complex 𝑛th root of unity

𝑒
2𝜋𝑖𝑘

𝑛 for 𝑘 = 0, 1,… , 𝑛 − 1

where 𝑒𝑖𝑢 = cos 𝑢 + 𝑖 sin (𝑢). Here 𝑢 represents
an angle in radians.

• Using 𝑒
2𝜋𝑖𝑘

𝑛 = cos 2𝜋𝑘 𝑛 + 𝑖 sin(2𝜋𝑘 𝑛), we can
check that it is a root

𝑒
2𝜋𝑖𝑘
𝑛
𝑛
= 𝑒2𝜋𝑖𝑘 = cos(2𝜋𝑘)

1

+𝑖 sin (2𝜋𝑘)
0

= 1

19

Examples

• The complex 4th roots of unity are
1,−1, 𝑖, −𝑖

where −1 = 𝑖.

• The complex 8th roots of unity are all of the above,
plus four more

1

2
+
𝑖

2
,
1

2
−
𝑖

2
, −
1

2
+
𝑖

2
, and −

1

2
−
𝑖

2

• For example

1

2
+
𝑖

2

2

=
1

2
+
2𝑖

2
+
𝑖2

2
= 𝑖

20

Principal 𝑛th Root of Unity

• The value

𝜔𝑛 = 𝑒
2𝜋𝑖
𝑛

is called the principal 𝒏th root of unity.

• All of the other complex 𝑛th roots of unity are powers
of 𝜔𝑛.

• The 𝑛 complex 𝑛th roots of unity, 𝜔𝑛
0, 𝜔𝑛
1, … , 𝜔𝑛

𝑛−1,
form a group under multiplication that has the same
structure as (ℤ𝑛, +) modulo 𝑛.

• 𝜔𝑛
𝑛 = 𝜔𝑛

0 = 1 implies

– 𝜔𝑛
𝑗
𝜔𝑛
𝑘 = 𝜔𝑛

𝑗+𝑘
= 𝜔𝑛

𝑗+𝑘 mod 𝑛

– 𝜔𝑛
−1 = 𝜔𝑛

𝑛−1

21

Visualizing 8 Complex 8th Roots of Unity

22

1 −1

𝑖

−𝑖

real

imaginary

𝜔8
0 = 𝜔8

8 = 1

𝜔8
1 =
1

2
+
𝑖

2
 𝜔8

3 = −
1

2
+
𝑖

2

𝜔8
4 = −1

𝜔8
2 = 𝑖

𝜔8
6 = −𝑖

𝜔8
5 = −

1

2
−
𝑖

2
 𝜔8

7 =
1

2
−
𝑖

2

Cancellation Lemma

• For any integers 𝑛 ≥ 0, 𝑘 ≥ 0, and 𝑏 > 0,

𝜔𝑑𝑛
𝑑𝑘 = 𝜔𝑛

𝑘.

• Proof

𝜔𝑑𝑛
𝑑𝑘 = 𝑒

2𝜋𝑖
𝑑𝑛
𝑑𝑘

= 𝑒
2𝜋𝑖
𝑛
𝑘
= 𝜔𝑛
𝑘

• For any even integer 𝑛 > 0, 𝜔𝑛
𝑛
2 = 𝜔2 = −1.

• Example 𝜔24
6 = 𝜔4

– 𝜔24
6 = 𝑒

2𝜋𝑖
24
6
= 𝑒2𝜋𝑖

6

24 = 𝑒
2𝜋𝑖
4 = 𝜔4

23

Halving Lemma

• If 𝑛 > 0 is even, then the squares of the 𝑛 complex
𝑛th roots of unity are the 𝑛 2 complex 𝑛 2

th roots of
unity.

• Proof

– By the cancellation lemma, we have 𝜔𝑛
𝑘 2 = 𝜔𝑛

2
𝑘 for any

nonnegative integer 𝑘.

• If we square all of the complex 𝑛th roots of unity,
then each 𝑛 2

th root of unity is obtained exactly twice

– 𝜔𝑛
𝑘+𝑛
2
2

= 𝜔𝑛
2𝑘+𝑛 = 𝜔𝑛

2𝑘𝜔𝑛
𝑛 = 𝜔𝑛

2𝑘 = 𝜔𝑛
𝑘 2

– Thus, 𝜔𝑛
𝑘 and 𝜔𝑛

𝑘+𝑛
2 have the same square

24

Summation Lemma

• For any integer 𝑛 ≥ 1 and nonzero integer 𝑘 not

divisible by 𝑛, 𝜔𝑛
𝑘 𝑗 = 0𝑛−1

𝑗=0 .

• Proof

– Geometric series 𝑥𝑗𝑛−1
𝑗=0 =

𝑥𝑛−1

𝑥−1

– 𝜔𝑛
𝑘 𝑗 =

𝜔𝑛
𝑘 𝑛−1

𝜔𝑛
𝑘−1
=
𝜔𝑛
𝑛 𝑘−1

𝜔𝑛
𝑘−1
=
1 𝑘−1

𝜔𝑛
𝑘−1
= 0𝑛−1

𝑗=0

– Requiring that 𝑘 not be divisible by 𝑛 ensures that the
denominator is not 0, since 𝜔𝑛

𝑘 = 1 only when k is divisible
by 𝑛

25

Discrete Fourier Transform (DFT)

• Evaluate a polynomial 𝐴(𝑥) of degree-bound 𝑛 at the
𝑛 complex 𝑛th roots of unity, 𝜔𝑛

0, 𝜔𝑛
1, 𝜔𝑛
2, … , 𝜔𝑛

𝑛−1.

– assume that 𝑛 is a power of 2

– assume 𝐴 is given in coefficient form 𝑎 = (𝑎0, 𝑎1, … , 𝑎𝑛−1)

• We define the results 𝑦𝑘, for 𝑘 = 0, 1,… , 𝑛 − 1, by

𝑦𝑘 = 𝐴 𝜔𝑛
𝑘 = 𝑎𝑗𝜔𝑛

𝑘𝑗𝑛−1
𝑗=0 .

• The vector 𝑦 = (𝑦0, 𝑦1, … , 𝑦𝑛−1) is the Discrete
Fourier Transform (DFT) of the coefficient vector
𝑎 = 𝑎0, 𝑎1, … , 𝑎𝑛−1 , denoted as 𝑦 = DFT𝑛(𝑎).

26

Fast Fourier Transform (FFT)

• Fast Fourier Transform (FFT) takes advantage of the
special properties of the complex roots of unity to
compute DFT𝑛(a) in time Θ(𝑛 log 𝑛).

• Divide-and-conquer strategy

– define two new polynomials of degree-bound 𝑛 2 , using
even-index and odd-index coefficients of 𝐴(𝑥) separately

– 𝐴 0 𝑥 = 𝑎0 + 𝑎2𝑥 + 𝑎4𝑥
2 +⋯+ 𝑎𝑛−2𝑥

𝑛
2 −1

– 𝐴 1 𝑥 = 𝑎1 + 𝑎3𝑥 + 𝑎5𝑥
2 +⋯+ 𝑎𝑛−1𝑥

𝑛
2 −1

– 𝐴 𝑥 = 𝐴 0 𝑥2 + 𝑥𝐴 1 (𝑥2)

27

Fast Fourier Transform (FFT)

• The problem of evaluating 𝐴(𝑥) at 𝜔𝑛
0, 𝜔𝑛
1, … , 𝜔𝑛

𝑛−1
reduces to

1. evaluating the degree-bound 𝑛 2 polynomials 𝐴 0 (𝑥)
and 𝐴 1 (𝑥) at the points 𝜔𝑛

0 2, 𝜔𝑛
1 2, … , 𝜔𝑛

𝑛−1 2

2. combining the results by 𝐴 𝑥 = 𝐴 0 𝑥2 + 𝑥𝐴 1 (𝑥2)

• Why bother?
– The list 𝜔𝑛

0 2, 𝜔𝑛
1 2, … , 𝜔𝑛

𝑛−1 2 does not contain 𝑛
distinct values, but 𝑛 2 complex 𝑛 2 th roots of unity

– Polynomials 𝐴 0 and 𝐴 1 are recursively evaluated at the
𝑛
2 complex 𝑛 2 th roots of unity

– Subproblems have exactly the same form as the original
problem, but are half the size

28

Example

• 𝐴 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 of degree-bound 4

– 𝐴 𝜔4
0 = 𝐴 1 = 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3

– 𝐴 𝜔4
1 = 𝐴 𝑖 = 𝑎𝑜 + 𝑎1𝑖 − 𝑎2 − 𝑎3𝑖

– 𝐴 𝜔4
2 = 𝐴 −1 = 𝑎0 − 𝑎1 + 𝑎2 − 𝑎3

– 𝐴 𝜔4
3 = 𝐴 −𝑖 = 𝑎0 − 𝑎1𝑖 + 𝑎2 + 𝑎3𝑖

• Using 𝐴 𝑥 = 𝐴 0 𝑥2 + 𝑥𝐴 1 𝑥2

– 𝐴 𝑥 = 𝑎0 + 𝑎2𝑥
2 + 𝑥 𝑎1 + 𝑎3𝑥

2

– 𝐴 𝜔4
0 = 𝐴 1 = 𝑎0 + 𝑎2 + 1(𝑎1 + 𝑎3)

– 𝐴 𝜔4
1 = 𝐴 𝑖 = 𝑎0 − 𝑎2 + 𝑖(𝑎1 − 𝑎3)

– 𝐴 𝜔4
2 = 𝐴 −1 = 𝑎0 + 𝑎2 − 1 𝑎1 + 𝑎3

– 𝐴 𝜔4
3 = 𝐴 −𝑖 = 𝑎0 − 𝑎2 − 𝑖(𝑎1 − 𝑎3)

29

Recursive FFT Algorithm

RECURSIVE-FFT 𝑎
 1 𝑛 ← 𝑙𝑒𝑛𝑔𝑡ℎ,𝑎- 𝑛 is a power of 2
 2 if 𝑛 = 1
 3 then return 𝑎 basis of recursion

 4 𝜔𝑛 ← 𝑒
2𝜋𝑖
𝑛 𝜔𝑛 is principal 𝑛th root of unity

 5 𝜔 ← 1
 6 𝑎 0 ← (𝑎0, 𝑎2, … , 𝑎𝑛−2)
 7 𝑎 1 ← (𝑎1, 𝑎3, … , 𝑎𝑛−1)

 8 𝑦 0 ← RECURSIVE-FFT 𝑎 0 𝑦𝑘
0
= 𝐴 0 𝜔𝑛

2
𝑘 = 𝐴 0 (𝜔𝑛

2𝑘)

 9 𝑦 1 ← RECURSIVE-FFT 𝑎 1 𝑦𝑘
1
= 𝐴 1 𝜔𝑛

2
𝑘 = 𝐴 1 (𝜔𝑛

2𝑘)
 10 for 𝑘 ← 0 to 𝑛 2 − 1

 11 do 𝑦𝑘 ← 𝑦𝑘
0
+ 𝜔𝑦𝑘

1

 12 𝑦𝑘+(𝑛 2) ← 𝑦𝑘
0
− 𝜔𝑦𝑘

1
 since −𝜔𝑛

𝑘 = 𝜔𝑛
𝑘+ 𝑛 2

 13 𝜔 ← 𝜔𝜔𝑛 compute 𝜔𝑛
𝑘 iteratively

 14 return 𝑦

30

Why Does It Work?

• For 𝑦0, 𝑦1, … 𝑦𝑛 2 −1 (line 11)

𝑦𝑘 = 𝑦𝑘
0
+𝜔𝑛
𝑘𝑦𝑘
1

 = 𝐴 0 𝜔𝑛
2𝑘 + 𝜔𝑛

𝑘𝐴 1 𝜔𝑛
2𝑘

 = 𝐴 𝜔𝑛
𝑘

• For 𝑦𝑛
2
, 𝑦𝑛

2 +1
, … , 𝑦𝑛−1 (line 12)

𝑦𝑘+𝑛 2 = 𝑦𝑘
0 −𝜔𝑛

𝑘𝑦𝑘
1

 = 𝑦𝑘
0 +𝜔𝑛

𝑘+ 𝑛 2 𝑦𝑘
1 since −𝜔𝑛

𝑘 = 𝜔𝑛
𝑘+ 𝑛 2

 = 𝐴 0 𝜔𝑛
2𝑘 +𝜔𝑛

𝑘+ 𝑛 2 𝐴 1 𝜔𝑛
2𝑘

 = 𝐴 0 𝜔𝑛
2𝑘+𝑛 +𝜔𝑛

𝑘+ 𝑛 2 𝐴 1 𝜔𝑛
2𝑘+𝑛

 since 𝜔𝑛
2𝑘+𝑛 = 𝜔𝑛

2𝑘

 = 𝐴 𝜔𝑛
𝑘+ 𝑛 2

31

Input Vector Tree of RECURSIVEFFT(𝑎)

32

(𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7)

(𝑎0, 𝑎2, 𝑎4, 𝑎6) (𝑎1, 𝑎3, 𝑎5, 𝑎7)

(𝑎0, 𝑎4) (𝑎2, 𝑎6) (𝑎1, 𝑎5) (𝑎3, 𝑎7)

(𝑎0) (𝑎4) (𝑎2) (𝑎6) (𝑎1) (𝑎5) (𝑎3) (𝑎7)

Interpolation

• Interpolation by computing the inverse DFT, denoted
by a = DFT𝑛

−1(𝑦).

• By modifying the FFT algorithm, we can compute
DFT𝑛
−1 in time Θ(𝑛 log 𝑛).

– switch the roles of 𝑎 and 𝑦

– replace 𝜔𝑛 by 𝜔𝑛
−1

– divide each element of the result by 𝑛

33

