Polynomials and the Fast Fourier Transform (FFT)

Algorithm Design and Analysis (Week 7)

Battle Plan

- Polynomials
- Algorithms to add, multiply and evaluate polynomials
- Coefficient and point-value representation
- Fourier Transform
- Discrete Fourier Transform (DFT) and inverse DFT to translate between polynomial representations
- "A Short Digression on Complex Roots of Unity"
- Fast Fourier Transform (FFT) is a divide-and-conquer algorithm based on properties of complex roots of unity

Polynomials

- A polynomial in the variable x is a representation of a function

$$
A(x)=a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$ as a formal sum $A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}$.

- We call the values $a_{0}, a_{1}, \ldots, a_{n-1}$ the coefficients of the polynomial
- $A(x)$ is said to have degree k if its highest nonzero coefficient is a_{k}.
- Any integer strictly greater than the degree of a polynomial is a degree-bound of that polynomial

Examples

- $A(x)=x^{3}-2 x-1$
$-A(x)$ has degree 3
$-A(x)$ has degree-bounds $4,5,6, \ldots$ or all values $>$ degree
$-A(x)$ has coefficients $(-1,-2,0,1)$
- $B(x)=x^{3}+x^{2}+1$
$-B(x)$ has degree 3
$-B(x)$ has degree bounds $4,5,6, \ldots$ or all values $>$ degree
$-B(x)$ has coefficients $(1,0,1,1)$

Coefficient Representation

- A coefficient representation of a polynomial $A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}$ of degree-bound n is a vector of coefficients $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$.
- More examples

$$
\begin{array}{ll}
-A(x)=6 x^{3}+7 x^{2}-10 x+9 & (9,-10,7,6) \\
-B(x)=-2 x^{3}+4 x-5 & (-5,4,0,-2)
\end{array}
$$

- The operation of evaluating the polynomial $A(x)$ at point x_{0} consists of computing the value of $A\left(x_{0}\right)$.
- Evaluation takes time $\Theta(n)$ using Horner's rule

$$
A\left(x_{0}\right)=a_{0}+x_{0}\left(a_{1}+x_{0}\left(a_{2}+\cdots+x_{0}\left(a_{n-2}+x_{0}\left(a_{n-1}\right)\right) \cdots\right)\right)
$$

Adding Polynomials

- Adding two polynomials represented by the coefficient vectors $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ and $b=\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)$ takes time $\Theta(n)$.
- Sum is the coefficient vector $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$, where $c_{j}=a_{j}+b_{j}$ for $j=0,1, \ldots, n-1$.
- Example

$$
\begin{array}{rrr}
A(x)=6 x^{3}+7 x^{2}-10 x+9 & (9,-10,7,6) \\
B(x)=-2 x^{3}+4 x-5 & (-5,4,0,-2) \\
\hline C(x)=4 x^{3}+7 x^{2}-6 x+4 & (4,-6,7,4)
\end{array}
$$

Multiplying Polynomials

- For polynomial multiplication, if $A(x)$ and $B(x)$ are polynomials of degree-bound n , we say their product $C(x)$ is a polynomial of degree-bound $2 n-1$.
- Example

$$
\begin{array}{r}
6 x^{3}+7 x^{2}-10 x+9 \\
-2 x^{3}+4 x-5 \\
\hline-30 x^{3}-35 x^{2}+50 x-45 \\
24 x^{4}+28 x^{3}-40 x^{2}+36 x \\
-12 x^{6}-14 x^{5}+20 x^{4}-18 x^{3} \\
\hline-12 x^{6}-14 x^{5}+44 x^{4}-20 x^{3}-75 x^{2}+86 x-45
\end{array}
$$

Multiplying Polynomials

- Multiplication of two degree-bound n polynomials $A(x)$ and $B(x)$ takes time $\Theta\left(n^{2}\right)$, since each coefficient in vector a must be multiplied by each coefficient in vector b.
- Another way to express the product $\mathrm{C}(\mathrm{x})$ is $\sum_{j=0}^{2 n-1} c_{j} x^{j}$, where $c_{j}=\sum_{k=0}^{j} a_{k} b_{j-k}$.
- The resulting coefficient vector $c=\left(c_{0}, c_{1}, \ldots c_{2 n-1}\right)$ is also called the convolution of the input vectors a and b, denoted as $c=a \otimes b$.

Point-Value Representation

- A point-value representation of a polynomial $A(x)$ of degree-bound n is a set of n point-value pairs

$$
\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}
$$

such that all of the x_{k} are distinct and $y_{k}=A\left(x_{k}\right)$ for $k=0,1, \ldots, n-1$.

- Example $A(x)=x^{3}-2 x+1$
- x_{k}
$\left.-A\left(x_{k}\right) \quad 1,0,5,22\right]\{(0,1),(1,0),(2,5),(3,22)\}$
- Using Horner's method, \boldsymbol{n}-point evaluation takes time $\Theta\left(n^{2}\right)$.

Point-Value Representation

- The inverse of evaluation is called interpolation
- determines coefficient form of polynomial from pointvalue representation
- For any set $\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}$ of n pointvalue pairs such that all the x_{k} values are distinct, there is a unique polynomial $A(x)$ of degree-bound n such that $y_{k}=A\left(x_{k}\right)$ for $k=0,1, \ldots, n-1$.
- Lagrange's formula

$$
A(x)=\sum_{k=0}^{n-1} y_{k} \frac{\prod_{j \neq k}\left(x-x_{j}\right)}{\prod_{j \neq k}\left(x_{k}-x_{j}\right)}
$$

- Using Lagrange's formula, interpolation takes time $\Theta\left(n^{2}\right)$.

Example

- Using Lagrange's formula, we interpolate the pointvalue representation $\{(0,1),(1,0),(2,5),(3,22)\}$.
$-1 \frac{(x-1)(x-2)(x-3)}{(0-1)(0-2)(0-3)}=\frac{x^{3}-6 x^{2}+11 x-6}{-6}=\frac{-x^{3}+6 x^{2}-11 x+6}{6}$
$-0 \frac{(x-0)(x-2)(x-3)}{(1-0)(1-2)(1-3)}=0$
$-5 \frac{(x-0)(x-1)(x-3)}{(2-0)(2-1)(2-3)}=5 \frac{x^{3}-4 x^{2}+3 x}{-2}=\frac{-15 x^{3}+60 x^{2}-45 x}{6}$
$-22 \frac{(x-0)(x-1)(x-2)}{(3-0)(3-1)(3-2)}=22 \frac{x^{3}-3 x^{2}+2 x}{6}=\frac{22 x^{3}-66 x^{2}+44 x}{6}$
$-\frac{1}{6}\left(6 x^{3}+0 x^{2}-12 x+6\right)$
$-x^{3}-2 x+1$

Adding Polynomials

- In point-value form, addition $C(x)=A(x)+B(x)$ is given by $C\left(x_{k}\right)=A\left(x_{k}\right)+B\left(x_{k}\right)$ for any point x_{k}.
$-A:\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}$
- $B:\left\{\left(x_{0}, y_{0}^{\prime}\right),\left(x_{1}, y_{1}^{\prime}\right), \ldots,\left(x_{n-1}, y_{n-1}^{\prime}\right)\right\}$
$-C:\left\{\left(x_{0}, y_{0}+y_{0}^{\prime}\right),\left(x_{1}, y_{1}+y_{1}^{\prime}\right), \ldots,\left(x_{n-1}, y_{n-1}+y_{n-1}^{\prime}\right)\right\}$
- A and B are evaluated for the same n points.
- The time to add two polynomials of degree-bound n in point-value form is $\Theta(n)$.

Example

- We add $C(x)=A(x)+B(x)$ in point-value form
$-A(x)=x^{3}-2 x+1$
$-B(x)=x^{3}+x^{2}+1$
$-x_{k}=(0,1,2,3)$
$-A: \quad\{(0,1),(1,0),(2,5),(3,22)\}$
- B: $\{(0,1),(1,3),(2,13),(3,37)\}$
$-C: \quad\{(0,2),(1,3),(2,18),(3,59)\}$

Multiplying Polynomials

- In point-value form, multiplication $C(x)=A(x) B(x)$ is given by $C\left(x_{k}\right)=A\left(x_{k}\right) B\left(x_{k}\right)$ for any point x_{k}.
- Problem: if A and B are of degree-bound n, then C is of degree-bound $2 n$.
- Need to start with "extended" point-value forms for A and B consisting of $2 n$ point-value pairs each.
$-A:\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{2 n-1}, y_{2 n-1}\right)\right\}$
- B: $\left\{\left(x_{0}, y_{0}^{\prime}\right),\left(x_{1}, y_{1}^{\prime}\right), \ldots,\left(x_{2 n-1}, y_{2 n-1}^{\prime}\right)\right\}$
$-C:\left\{\left(x_{0}, y_{0} y_{0}^{\prime}\right),\left(x_{1}, y_{1} y_{1}^{\prime}\right), \ldots,\left(x_{2 n-1}, y_{2 n-1} y_{2 n-1}^{\prime}\right)\right\}$
- The time to multiply two polynomials of degreebound n in point-value form is $\Theta(n)$.

Example

- We multiply $C(x)=A(x) B(x)$ in point-value form
$-A(x)=x^{3}-2 x+1$
$-B(x)=x^{3}+x^{2}+1$
$-x_{k}=(-3,-2,-1,0,1,2,3) \quad$ We need 7 coefficients!
$-A: \quad\{(-3,-17),(-2,-3),(-1,1),(0,1),(1,0),(2,5),(3,22)\}$
- B: $\{(-3,-20),(-2,-3),(-1,2),(0,1),(1,3),(2,13),(3,37)\}$
$-C: \quad\{(-3,340),(-2,9),(-1,2),(0,1),(1,0),(2,65),(3,814)\}$

The Road So Far

- Can we do better?
- Using Fast Fourier Transform (FFT) and its inverse, we can do evaluation and interpolation in time $\Theta(n \log n)$.
- The product of two polynomials of degree-bound n can be computed in time $\Theta(n \log n)$, with both the input and output in coefficient form.

Fourier Transform

- Fourier Transforms originate from signal processing
- Transform signal from time domain to frequency domain

- Input signal is a function mapping time to amplitude
- Output is a weighted sum of phase-shifted sinusoids of varying frequencies

Fast Multiplication of Polynomials

- Using complex roots of unity
- Evaluation by taking the Discrete Fourier Transform (DFT) of a coefficient vector
- Interpolation by taking the "inverse DFT" of point-value pairs, yielding a coefficient vector
- Fast Fourier Transform (FFT) can perform DFT and inverse DFT in time $\Theta(n \log n)$
- Algorithm

1. Add n higher-order zero coefficients to $A(x)$ and $B(x)$
2. Evaluate $A(x)$ and $B(x)$ using FFT for $2 n$ points
3. Pointwise multiplication of point-value forms
4. Interpolate $C(x)$ using FFT to compute inverse DFT

Complex Roots of Unity

- A complex $\boldsymbol{n}^{\text {th }}$ root of unity (1) is a complex number ω such that $\omega^{n}=1$.
- There are exactly n complex $n^{\text {th }}$ root of unity

$$
e^{2 \pi i k / n} \text { for } k=0,1, \ldots, n-1
$$

where $e^{i u}=\cos (u)+i \sin (u)$. Here u represents an angle in radians.

- Using $e^{2 \pi i k / n}=\cos (2 \pi k / n)+i \sin (2 \pi k / n)$, we can check that it is a root
$\left(e^{2 \pi i k / n}\right)^{n}=e^{2 \pi i k}=\underbrace{\cos (2 \pi k)}_{1}+i \underbrace{\sin (2 \pi k)}_{0}=1$

Examples

- The complex $4^{\text {th }}$ roots of unity are

$$
1,-1, i,-i
$$

where $\sqrt{-1}=i$.

- The complex $8^{\text {th }}$ roots of unity are all of the above, plus four more

$$
\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}, \frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}},-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}, \text { and }-\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}
$$

- For example

$$
\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{2}=\frac{1}{2}+\frac{2 i}{2}+\frac{i^{2}}{2}=i
$$

Principal $n^{\text {th }}$ Root of Unity

- The value

$$
\omega_{n}=e^{2 \pi i / n}
$$

is called the principal $\boldsymbol{n}^{\text {th }}$ root of unity.

- All of the other complex $n^{\text {th }}$ roots of unity are powers of ω_{n}.
- The n complex $n^{\text {th }}$ roots of unity, $\omega_{n}^{0}, \omega_{n}^{1}, \ldots, \omega_{n}^{n-1}$, form a group under multiplication that has the same structure as $\left(\mathbb{Z}_{n},+\right)$ modulo n.
- $\omega_{n}^{n}=\omega_{n}^{0}=1$ implies
$-\omega_{n}^{j} \omega_{n}^{k}=\omega_{n}^{j+k}=\omega_{n}^{(j+k) \bmod n}$
- $\omega_{n}^{-1}=\omega_{n}^{n-1}$

Visualizing 8 Complex $8^{\text {th }}$ Roots of Unity

Cancellation Lemma

- For any integers $n \geq 0, k \geq 0$, and $b>0$,

$$
\omega_{d n}^{d k}=\omega_{n}^{k}
$$

- Proof

$$
\omega_{d n}^{d k}=\left(e^{2 \pi i / d n}\right)^{d k}=\left(e^{2 \pi i / n}\right)^{k}=\omega_{n}^{k}
$$

- For any even integer $n>0, \omega_{n}^{n / 2}=\omega_{2}=-1$.
- Example $\omega_{24}^{6}=\omega_{4}$
$-\omega_{24}^{6}=\left(e^{2 \pi i / 24}\right)^{6}=e^{2 \pi i \frac{6}{24}}=e^{2 \pi i / 4}=\omega_{4}$

Halving Lemma

- If $n>0$ is even, then the squares of the n complex $n^{\text {th }}$ roots of unity are the $n / 2$ complex $n / 2^{\text {th }}$ roots of unity.
- Proof
- By the cancellation lemma, we have $\left(\omega_{n}^{k}\right)^{2}=\omega_{n / 2}^{k}$ for any nonnegative integer k.
- If we square all of the complex $n^{\text {th }}$ roots of unity, then each $n / 2^{\text {th }}$ root of unity is obtained exactly twice
$-\left(\omega_{n}^{k+n / 2}\right)^{2}=\omega_{n}^{2 k+n}=\omega_{n}^{2 k} \omega_{n}^{n}=\omega_{n}^{2 k}=\left(\omega_{n}^{k}\right)^{2}$
- Thus, ω_{n}^{k} and $\omega_{n}^{k+n / 2}$ have the same square

Summation Lemma

- For any integer $n \geq 1$ and nonzero integer k not divisible by $n, \sum_{j=0}^{n-1}\left(\omega_{n}^{k}\right)^{j}=0$.
- Proof
- Geometric series $\sum_{j=0}^{n-1} x^{j}=\frac{x^{n}-1}{x-1}$
$-\sum_{j=0}^{n-1}\left(\omega_{n}^{k}\right)^{j}=\frac{\left(\omega_{n}^{k}\right)^{n}-1}{\omega_{n}^{k}-1}=\frac{\left(\omega_{n}^{n}\right)^{k}-1}{\omega_{n}^{k}-1}=\frac{(1)^{k}-1}{\omega_{n}^{k}-1}=0$
- Requiring that k not be divisible by n ensures that the denominator is not 0 , since $\omega_{n}^{k}=1$ only when k is divisible by n

Discrete Fourier Transform (DFT)

- Evaluate a polynomial $A(x)$ of degree-bound n at the n complex $n^{\text {th }}$ roots of unity, $\omega_{n}^{0}, \omega_{n}^{1}, \omega_{n}^{2}, \ldots, \omega_{n}^{n-1}$.
- assume that n is a power of 2
- assume A is given in coefficient form $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$
- We define the results y_{k}, for $k=0,1, \ldots, n-1$, by

$$
y_{k}=A\left(\omega_{n}^{k}\right)=\sum_{j=0}^{n-1} a_{j} \omega_{n}^{k j}
$$

- The vector $y=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$ is the Discrete Fourier Transform (DFT) of the coefficient vector $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$, denoted as $y=\operatorname{DFT}_{n}(a)$.

Fast Fourier Transform (FFT)

- Fast Fourier Transform (FFT) takes advantage of the special properties of the complex roots of unity to compute $\mathrm{DFT}_{n}(\mathrm{a})$ in time $\Theta(n \log n)$.
- Divide-and-conquer strategy
- define two new polynomials of degree-bound $n / 2$, using even-index and odd-index coefficients of $A(x)$ separately
$-A^{[0]}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\cdots+a_{n-2} x^{n / 2-1}$
$-A^{[1]}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\cdots+a_{n-1} x^{n / 2-1}$
$-A(x)=A^{[0]}\left(x^{2}\right)+x A^{[1]}\left(x^{2}\right)$

Fast Fourier Transform (FFT)

- The problem of evaluating $A(x)$ at $\omega_{n}^{0}, \omega_{n}^{1}, \ldots, \omega_{n}^{n-1}$ reduces to

1. evaluating the degree-bound $n / 2$ polynomials $A^{[0]}(x)$ and $A^{[1]}(x)$ at the points $\left(\omega_{n}^{0}\right)^{2},\left(\omega_{n}^{1}\right)^{2}, \ldots,\left(\omega_{n}^{n-1}\right)^{2}$
2. combining the results by $A(x)=A^{[0]}\left(x^{2}\right)+x A^{[1]}\left(x^{2}\right)$

- Why bother?
- The list $\left(\omega_{n}^{0}\right)^{2},\left(\omega_{n}^{1}\right)^{2}, \ldots,\left(\omega_{n}^{n-1}\right)^{2}$ does not contain n distinct values, but $n / 2$ complex ${ }^{n} / 2^{\text {th }}$ roots of unity
- Polynomials $A^{[0]}$ and $A^{[1]}$ are recursively evaluated at the $n / 2$ complex $n / 2^{\text {th }}$ roots of unity
- Subproblems have exactly the same form as the original problem, but are half the size

Example

- $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ of degree-bound 4
$-A\left(\omega_{4}^{0}\right)=A(1)=a_{0}+a_{1}+a_{2}+a_{3}$
$-A\left(\omega_{4}^{1}\right)=A(i)=a_{o}+a_{1} i-a_{2}-a_{3} i$
$-A\left(\omega_{4}^{2}\right)=A(-1)=a_{0}-a_{1}+a_{2}-a_{3}$
$-A\left(\omega_{4}^{3}\right)=A(-i)=a_{0}-a_{1} i+a_{2}+a_{3} i$
- Using $A(x)=A^{[0]}\left(x^{2}\right)+x A^{[1]}\left(x^{2}\right)$
$-A(x)=a_{0}+a_{2} x^{2}+x\left(a_{1}+a_{3} x^{2}\right)$
$-A\left(\omega_{4}^{0}\right)=A(1)=a_{0}+a_{2}+1\left(a_{1}+a_{3}\right)$
$-A\left(\omega_{4}^{1}\right)=A(i)=a_{0}-a_{2}+i\left(a_{1}-a_{3}\right)$
$-A\left(\omega_{4}^{2}\right)=A(-1)=a_{0}+a_{2}-1\left(a_{1}+a_{3}\right)$
$-A\left(\omega_{4}^{3}\right)=A(-i)=a_{0}-a_{2}-i\left(a_{1}-a_{3}\right)$

Recursive FFT Algorithm

Recursive-FFT (a)	
$1 n \leftarrow \operatorname{length}[a]$	n is a power of 2
2 if $n=1$	
3 then return a	basis of recursion
$4 \omega_{n} \leftarrow e^{2 \pi i / n}$	ω_{n} is principal $n^{\text {th }}$ root of unity
$5 \omega \leftarrow 1$	
$6 a^{[0]} \leftarrow\left(a_{0}, a_{2}, \ldots, a_{n-2}\right)$	
$7 a^{[1]} \leftarrow\left(a_{1}, a_{3}, \ldots, a_{n-1}\right)$	
$8 y^{[0]} \leftarrow \operatorname{RECURSIVE-FFT}\left(a^{[0]}\right)$	$y_{k}^{[0]}=A^{[0]}\left(\omega_{n / 2}^{k}\right)=A^{[0]}\left(\omega_{n}^{2 k}\right)$
$9 y^{[1]} \leftarrow$ ReCursive-FFT $\left(a^{[1]}\right)$	$y_{k}^{[1]}=A^{[1]}\left(\omega_{n / 2}^{k}\right)=A^{[1]}\left(\omega_{n}^{2 k}\right)$
10 for $k \leftarrow 0$ to ${ }^{n / 2}-1$	
11 do $y_{k} \leftarrow y_{k}^{[0]}+\omega y_{k}^{[1]}$	
$12 \quad y_{k+(n / 2)} \leftarrow y_{k}^{[0]}-\omega y_{k}^{[1]}$	since $-\omega_{n}^{k}=\omega_{n}^{k+(n / 2)}$
$13 \quad \omega \leftarrow \omega \omega_{n}$	compute ω_{n}^{k} iteratively
14 return y	

Why Does It Work?

- For $y_{0}, y_{1}, \ldots y_{n / 2-1}$

$$
\begin{align*}
y_{k} \quad & =y_{k}^{[0]}+\omega_{n}^{k} y_{k}^{[1]} \tag{line11}\\
& =A^{[0]}\left(\omega_{n}^{2 k}\right)+\omega_{n}^{k} A^{[1]}\left(\omega_{n}^{2 k}\right) \\
& =A\left(\omega_{n}^{k}\right)
\end{align*}
$$

- For $y_{n / 2}, y_{n / 2+1}, \ldots, y_{n-1}$

$$
\begin{align*}
y_{k+n / 2} & =y_{k}^{[0]}-\omega_{n}^{k} y_{k}^{[1]} \tag{line12}\\
& =y_{k}^{[0]}+\omega_{n}^{k+(n / 2)} y_{k}^{[1]} \quad \text { since }-\omega_{n}^{k}=\omega_{n}^{k+(n / 2)} \\
& =A^{[0]}\left(\omega_{n}^{2 k}\right)+\omega_{n}^{k+(n / 2)} A^{[1]}\left(\omega_{n}^{2 k}\right) \\
& =A^{[0]}\left(\omega_{n}^{2 k+n}\right)+\omega_{n}^{k+(n / 2)} A^{[1]}\left(\omega_{n}^{2 k+n}\right) \quad \text { since } \omega_{n}^{2 k+n}=\omega_{n}^{2 k} \\
& =A\left(\omega_{n}^{k+(n / 2)}\right)
\end{align*}
$$

Input Vector Tree of RecursiveFFT (a)

Interpolation

- Interpolation by computing the inverse DFT, denoted by a $=\mathrm{DFT}_{n}^{-1}(y)$.
- By modifying the FFT algorithm, we can compute DFT_{n}^{-1} in time $\Theta(n \log n)$.
- switch the roles of a and y
- replace ω_{n} by ω_{n}^{-1}
- divide each element of the result by n

